IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Projection-Based Statistical Inference in Linear Structural Models with Possibly Weak Instruments

Listed author(s):
  • DUFOUR, Jean-Marie
  • TAAMOUTI, Mohamed

It is well known that standard asymptotic theory is not valid or is extremely unreliable in models with identification problems or weak instruments [Dufour (1997, Econometrica), Staiger and Stock (1997, Econometrica), Wang and Zivot (1998, Econometrica), Stock and Wright (2000, Econometrica), Dufour and Jasiak (2001, International Economic Review)]. One possible way out consists here in using a variant of the Anderson-Rubin (1949, Ann. Math. Stat.) procedure. The latter, however, allows one to build exact tests and confidence sets only for the full vector of the coefficients of the endogenous explanatory variables in a structural equation, which in general does not allow for individual coefficients. This problem may in principle be overcome by using projection techniques [Dufour (1997, Econometrica), Dufour and Jasiak (2001, International Economic Review)]. Artypes are emphasized because they are robust to both weak instruments and instrument exclusion. However, these techniques can be implemented only by using costly numerical techniques. In this paper, we provide a complete analytic solution to the problem of building projection-based confidence sets from Anderson-Rubin-type confidence sets. The latter involves the geometric properties of "quadrics"" and can be viewed as an extension of usual confidence intervals and ellipsoids. Only least squares techniques are required for building the confidence intervals. We also study by simulation how ""conservative"" projection-based confidence sets are. Finally, we illustrate the methods proposed by applying them to three different examples: the relationship between trade and growth in a cross-section of countries, returns to education, and a study of production functions in the U.S. economy." L'une des questions les plus étudiées récemment en économétrie est celle des modèles présentant des problèmes de quasi non-identification ou d'instruments faibles. L'une des conséquences import

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.cireqmontreal.com/wp-content/uploads/cahiers/08-2003-cah.pdf
Download Restriction: no

Paper provided by Centre interuniversitaire de recherche en économie quantitative, CIREQ in its series Cahiers de recherche with number 08-2003.

as
in new window

Length: 46 pages Abstract: It is well known that standard asymptotic theory is not valid or is extremely unreliable in models with identification problems or weak instruments [Dufour (1997, Econometrica), Staiger and Stock (1997, Econometrica), Wang and Zivot (1998, Econometrica), Stock and Wright (2000, Econometrica), Dufour and Jasiak (2001, International Economic Review)]. One possible way out consists here in using a variant of the Anderson-Rubin (1949, Ann. Math. Stat.) procedure. The latter, however, allows one to build exact tests and confidence sets only for the full vector of the coefficients of the endogenous explanatory variables in a structural equation, which in general does not allow for individual coefficients. This problem may in principle be overcome by using projection techniques [Dufour (1997, Econometrica), Dufour and Jasiak (2001, International Economic Review)]. AR-types are emphasized because they are robust to both weak instruments and instrument exclusion. However, these techniques can be implemented only by using costly numerical techniques. In this paper, we provide a complete analytic solution to the problem of building projection-based confidence sets from Anderson-Rubin-type confidence sets. The latter involves the geometric properties of "quadrics" and can be viewed as an extension of usual confidence intervals and ellipsoids. Only least squares techniques are required for building the confidence intervals. We also study by simulation how \ldblquote conservative\rdblquote projection-based confidence sets are. Finally, we illustrate the methods proposed by applying them to three different examples: the relationship between trade and growth in a cross-section of countries, returns to education, and a study of production functions in the U.S. economy.
Date of creation: 2003
Handle: RePEc:mtl:montec:08-2003
Contact details of provider: Postal:
C.P. 6128, Succ. centre-ville, Montréal (PQ) H3C 3J7

Phone: (514) 343-6557
Fax: (514) 343-7221
Web page: http://www.cireq.umontreal.ca
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Douglas Staiger & James H. Stock, 1994. "Instrumental Variables Regression with Weak Instruments," NBER Technical Working Papers 0151, National Bureau of Economic Research, Inc.
  2. Dufour, Jean-Marie & Jasiak, Joann, 2001. "Finite Sample Limited Information Inference Methods for Structural Equations and Models with Generated Regressors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(3), pages 815-843, August.
  3. Donald, Stephen G. & Whitney Newey, 1999. "Choosing the Number of Instruments," Working papers 99-05, Massachusetts Institute of Technology (MIT), Department of Economics.
  4. N. Gregory Mankiw & David Romer & David N. Weil, 1990. "A Contribution to the Empirics of Economic Growth," NBER Working Papers 3541, National Bureau of Economic Research, Inc.
  5. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-529, October.
  6. PERRON, Benoît, 1999. "Semi-Parametric Weak Instrument Regressions with an Application to the Risk-Return Trade-off," Cahiers de recherche 9901, Universite de Montreal, Departement de sciences economiques.
  7. Maddala, G S, 1974. "Some Small Sample Evidence on Tests of Significance in Simultaneous Equations Models," Econometrica, Econometric Society, vol. 42(5), pages 841-851, September.
  8. Charles Nelson & Richard Startz & Eric Zivot, 2000. "Improved Inference for the Instrumental Variables Estimator," Econometric Society World Congress 2000 Contributed Papers 1600, Econometric Society.
  9. Charles R. Nelson & Richard Startz & Eric Zivot, 1996. "Valid Confidence Intervals and Inference in the Presence of Weak Instruments," Econometrics 9612002, EconWPA.
  10. Jean-Marie Dufour & Jan F. Kiviet, 1998. "Exact Inference Methods for First-Order Autoregressive Distributed Lag Models," Econometrica, Econometric Society, vol. 66(1), pages 79-104, January.
  11. Maddala, G S & Jeong, Jinook, 1992. "On the Exact Small Sample Distribution of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 60(1), pages 181-183, January.
  12. Basu, S. & Fernald, J.G., 1993. "Are Apparent Productive Spillovers a Figment of Specification Error," Papers 93-22, Michigan - Center for Research on Economic & Social Theory.
  13. Joshua D. Angrist & Alan B. Keueger, 1991. "Does Compulsory School Attendance Affect Schooling and Earnings?," The Quarterly Journal of Economics, Oxford University Press, vol. 106(4), pages 979-1014.
  14. Douglas A. Irwin & Marko Tervio, 2000. "Does Trade Raise Income? Evidence from the Twentieth Century," NBER Working Papers 7745, National Bureau of Economic Research, Inc.
  15. Jiahui Wang & Eric Zivot, 1998. "Inference on Structural Parameters in Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 66(6), pages 1389-1404, November.
  16. Ann Harrison, 1995. "Openness and Growth: A Time-Series, Cross-Country Analysis for Developing Countries," NBER Working Papers 5221, National Bureau of Economic Research, Inc.
  17. Choi, In & Phillips, Peter C. B., 1992. "Asymptotic and finite sample distribution theory for IV estimators and tests in partially identified structural equations," Journal of Econometrics, Elsevier, vol. 51(1-2), pages 113-150.
  18. Alastair Hall & Fernanda P. M. Peixe, 2000. "A Consistent Method for the Selection of Relevant Instruments," Econometric Society World Congress 2000 Contributed Papers 0790, Econometric Society.
  19. Cragg, John G. & Donald, Stephen G., 1993. "Testing Identifiability and Specification in Instrumental Variable Models," Econometric Theory, Cambridge University Press, vol. 9(02), pages 222-240, April.
  20. John Chao, 2000. "On the Bias and MSE of the IV Estimator Under Weak Identification," Econometric Society World Congress 2000 Contributed Papers 1622, Econometric Society.
  21. Hall, Alastair R & Rudebusch, Glenn D & Wilcox, David W, 1996. "Judging Instrument Relevance in Instrumental Variables Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 37(2), pages 283-298, May.
  22. Angrist, Joshua D & Krueger, Alan B, 1995. "Split-Sample Instrumental Variables Estimates of the Return to Schooling," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(2), pages 225-235, April.
  23. Burnside, Craig, 1996. "Production function regressions, returns to scale, and externalities," Journal of Monetary Economics, Elsevier, vol. 37(2-3), pages 177-201, April.
  24. Hahn, Jinyong & Hausman, Jerry, 2002. "Notes on bias in estimators for simultaneous equation models," Economics Letters, Elsevier, vol. 75(2), pages 237-241, April.
  25. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119, December.
  26. John Bound & David A. Jaeger & Regina Baker, 1993. "The Cure Can Be Worse than the Disease: A Cautionary Tale Regarding Instrumental Variables," NBER Technical Working Papers 0137, National Bureau of Economic Research, Inc.
  27. Dufour, Jean-Marie, 1989. "Nonlinear Hypotheses, Inequality Restrictions, and Non-nested Hypotheses: Exact Simultaneous Tests in Linear Regressions," Econometrica, Econometric Society, vol. 57(2), pages 335-355, March.
  28. James H. Stock & Motohiro Yogo, 2002. "Testing for Weak Instruments in Linear IV Regression," NBER Technical Working Papers 0284, National Bureau of Economic Research, Inc.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:mtl:montec:08-2003. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Sharon BREWER)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.