IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Inference with Weak Instruments

  • Donald W.K. Andrews
  • James H. Stock

This paper reviews recent developments in methods for dealing with weak instruments (IVs) in IV regression models. The focus is more on tests and confidence intervals derived from tests than on estimators. The paper also presents new testing results under "many weak IV asymptotics," which are relevant when the number of IVs is large and the coefficients on the IVs are relatively small. Asymptotic power envelopes for invariant tests are established. Power comparisons of the conditional likelihood ratio (CLR), Anderson- Rubin, and Lagrange multiplier tests are made. Numerical results show that the CLR test is on the asymptotic power envelope. This holds no matter what the relative magnitude of the IV strength to the number of IVs.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.nber.org/papers/t0313.pdf
Download Restriction: no

Paper provided by National Bureau of Economic Research, Inc in its series NBER Technical Working Papers with number 0313.

as
in new window

Length:
Date of creation: Aug 2005
Date of revision:
Handle: RePEc:nbr:nberte:0313
Contact details of provider: Postal: National Bureau of Economic Research, 1050 Massachusetts Avenue Cambridge, MA 02138, U.S.A.
Phone: 617-868-3900
Web page: http://www.nber.org
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. James M. Nason & Gregor W. Smith, 2005. "Identifying the New Keynesian Phillips curve," Working Paper 2005-01, Federal Reserve Bank of Atlanta.
  2. Guggenberger, Patrik & Smith, Richard J., 2005. "Generalized Empirical Likelihood Estimators And Tests Under Partial, Weak, And Strong Identification," Econometric Theory, Cambridge University Press, vol. 21(04), pages 667-709, August.
  3. Hall, Alastair R & Rudebusch, Glenn D & Wilcox, David W, 1996. "Judging Instrument Relevance in Instrumental Variables Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 37(2), pages 283-98, May.
  4. Hausman, Jerry & Stock, James H. & Yogo, Motohiro, 2005. "Asymptotic properties of the Hahn-Hausman test for weak-instruments," Economics Letters, Elsevier, vol. 89(3), pages 333-342, December.
  5. Kajal Lahiri & Chuanming Gao, 2001. "A Comparison of Some Recent Bayesian and Classical Procedures for Simultaneous Equation Models with Weak Instruments," Discussion Papers 01-15, University at Albany, SUNY, Department of Economics.
  6. Charles R. Nelson & Richard Startz & Eric Zivot, 1996. "Valid Confidence Intervals and Inference in the Presence of Weak Instruments," Econometrics 9612002, EconWPA.
  7. DUFOUR, Jean-Marie & TAAMOUTI, Mohamed, 2003. "Projection-Based Statistical Inference in Linear Structural Models with Possibly Weak Instruments," Cahiers de recherche 08-2003, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  8. Frank Kleibergen & Eric Zivot, 1998. "Bayesian and Classical Approaches to Instrumental Variables Regression," Econometrics 9812002, EconWPA.
  9. Chao, John & Swanson, Norman R., 2007. "Alternative approximations of the bias and MSE of the IV estimator under weak identification with an application to bias correction," Journal of Econometrics, Elsevier, vol. 137(2), pages 515-555, April.
  10. Douglas Staiger & James H. Stock, 1994. "Instrumental Variables Regression with Weak Instruments," NBER Technical Working Papers 0151, National Bureau of Economic Research, Inc.
  11. Hahn, Jinyong, 2002. "Optimal Inference With Many Instruments," Econometric Theory, Cambridge University Press, vol. 18(01), pages 140-168, February.
  12. Chao, J. C. & Phillips, P. C. B., 1998. "Posterior distributions in limited information analysis of the simultaneous equations model using the Jeffreys prior," Journal of Econometrics, Elsevier, vol. 87(1), pages 49-86, August.
  13. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
  14. Jinyong Hahn & Jerry Hausman & Guido Kuersteiner, 2004. "Estimation with weak instruments: Accuracy of higher-order bias and MSE approximations," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 272-306, 06.
  15. John Shea, 1996. "Instrument Relevance in Multivariate Linear Models: A Simple Measure," NBER Technical Working Papers 0193, National Bureau of Economic Research, Inc.
  16. Motohiro Yogo, 2004. "Estimating the Elasticity of Intertemporal Substitution When Instruments Are Weak," The Review of Economics and Statistics, MIT Press, vol. 86(3), pages 797-810, August.
  17. Nelson, C. & Startz, R., 1988. "Some Furthere Results On The Exact Small Sample Properties Of The Instrumental Variable Estimator," Discussion Papers in Economics at the University of Washington 88-06, Department of Economics at the University of Washington.
  18. Rothenberg, Thomas J., 1984. "Approximating the distributions of econometric estimators and test statistics," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 15, pages 881-935 Elsevier.
  19. Neely, Christopher J & Roy, Amlan & Whiteman, Charles H, 2001. "Risk Aversion versus Intertemporal Substitution: A Case Study of Identification Failure in the Intertemporal Consumption Capital Asset Pricing Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 395-403, October.
  20. Kleibergen, F.R. & van Dijk, H.K., 1997. "Bayesian Simultaneous Equations Analysis using Reduced Rank Structures," Econometric Institute Research Papers EI 9714/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  21. Choi, In & Phillips, Peter C. B., 1992. "Asymptotic and finite sample distribution theory for IV estimators and tests in partially identified structural equations," Journal of Econometrics, Elsevier, vol. 51(1-2), pages 113-150.
  22. Donald W.K. Andrews & Marcelo J. Moreira & James H. Stock, 2004. "Optimal Invariant Similar Tests for Instrumental Variables Regression," Cowles Foundation Discussion Papers 1476, Cowles Foundation for Research in Economics, Yale University.
  23. Andrews, Donald W.K. & Marmer, Vadim, 2008. "Exactly distribution-free inference in instrumental variables regression with possibly weak instruments," Journal of Econometrics, Elsevier, vol. 142(1), pages 183-200, January.
  24. Marcelo J. Moreira & Jack R. Porter & Gustavo A. Suarez, 2004. "Bootstrap and Higher-Order Expansion Validity When Instruments May Be Weak," NBER Technical Working Papers 0302, National Bureau of Economic Research, Inc.
  25. Maddala, G S & Jeong, Jinook, 1992. "On the Exact Small Sample Distribution of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 60(1), pages 181-83, January.
  26. Hall, Peter, 1984. "Central limit theorem for integrated square error of multivariate nonparametric density estimators," Journal of Multivariate Analysis, Elsevier, vol. 14(1), pages 1-16, February.
  27. Dufour, Jean-Marie & Jasiak, Joann, 2001. "Finite Sample Limited Information Inference Methods for Structural Equations and Models with Generated Regressors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(3), pages 815-43, August.
  28. Marcelo J. Moreira, 2003. "A Conditional Likelihood Ratio Test for Structural Models," Econometrica, Econometric Society, vol. 71(4), pages 1027-1048, 07.
  29. Donald, Stephen G & Newey, Whitney K, 2001. "Choosing the Number of Instruments," Econometrica, Econometric Society, vol. 69(5), pages 1161-91, September.
  30. Mehmet Caner, 2010. "Exponential Tilting with Weak Instruments: Estimation and Testing," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(3), pages 307-325, 06.
  31. Kleibergen, Frank, 2007. "Generalizing weak instrument robust IV statistics towards multiple parameters, unrestricted covariance matrices and identification statistics," Journal of Econometrics, Elsevier, vol. 139(1), pages 181-216, July.
  32. Jiahui Wang & Eric Zivot, 1998. "Inference on Structural Parameters in Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 66(6), pages 1389-1404, November.
  33. Leslie G. Godfrey, 1999. "Instrument Relevance in Multivariate Linear Models," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 550-552, August.
  34. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-29, October.
  35. Zellner, Arnold, 1998. "The finite sample properties of simultaneous equations' estimates and estimators Bayesian and non-Bayesian approaches," Journal of Econometrics, Elsevier, vol. 83(1-2), pages 185-212.
  36. Frank Kleibergen, 2002. "Pivotal Statistics for Testing Structural Parameters in Instrumental Variables Regression," Econometrica, Econometric Society, vol. 70(5), pages 1781-1803, September.
  37. Moreira, Marcelo J., 2009. "Tests with correct size when instruments can be arbitrarily weak," Journal of Econometrics, Elsevier, vol. 152(2), pages 131-140, October.
  38. Hall, Robert E, 1978. "Stochastic Implications of the Life Cycle-Permanent Income Hypothesis: Theory and Evidence," Journal of Political Economy, University of Chicago Press, vol. 86(6), pages 971-87, December.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:nbr:nberte:0313. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.