IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2005-4.html
   My bibliography  Save this paper

Small Concentration Asymptotics and Instrumental Variables Inference

Author

Abstract

Poskitt and Skeels (2003) provide a new approximation to the sampling distribution of the IV estimator in a simultaneous equations model, the approximation is appropriate when the concentration parameter associated with the reduced form model is small. A basic purpose of this paper is to provide the practitioner with easily implemented inferential tools based upon extensions to these small concentration asymptotic results. We present various approximations to the sampling distribution of functions of the IV estimator based upon small concentration asymptotics, and investigate hypothesis testing procedures and confidence region construction using these approximations. It is shown that the test statistics advanced are asymptotically pivotal and that the associated critical regions generate locally uniformly most powerful invariant tests. The confidence regions are also shown to be valid. The small-concentration asymptotic approximations lead to a non-standard application of standard distributions, facilitating numerical implementation using commonly available software.

Suggested Citation

  • D. S. Poskitt & C. L. Skeels, 2005. "Small Concentration Asymptotics and Instrumental Variables Inference," Monash Econometrics and Business Statistics Working Papers 4/05, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2005-4
    as

    Download full text from publisher

    File URL: http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2005/wp4-05.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. D. S. Poskitt & C. L. Skeels, 2004. "Approximating the Distribution of the Instrumental Variables Estimator when the Concentration Parameter is Small," Monash Econometrics and Business Statistics Working Papers 19/04, Monash University, Department of Econometrics and Business Statistics.
    2. Jean-Marie Dufour & Mohamed Taamouti, 2005. "Projection-Based Statistical Inference in Linear Structural Models with Possibly Weak Instruments," Econometrica, Econometric Society, vol. 73(4), pages 1351-1365, July.
    3. Phillips, P.C.B., 1989. "Partially Identified Econometric Models," Econometric Theory, Cambridge University Press, vol. 5(2), pages 181-240, August.
    4. Nelson, Charles R & Startz, Richard, 1990. "Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 58(4), pages 967-976, July.
    5. Rothenberg, Thomas J., 1984. "Approximating the distributions of econometric estimators and test statistics," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 15, pages 881-935, Elsevier.
    6. Richard Startz & Charles Nelson & Eric Zivot, 1999. "Improved Inference for the Instrumental Variable Estimator," Working Papers 0039, University of Washington, Department of Economics.
    7. Bekker, Paul & Kleibergen, Frank, 2003. "Finite-Sample Instrumental Variables Inference Using An Asymptotically Pivotal Statistic," Econometric Theory, Cambridge University Press, vol. 19(5), pages 744-753, October.
    8. Bekker, Paul A, 1994. "Alternative Approximations to the Distributions of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 62(3), pages 657-681, May.
    9. Sargan, J D & Mikhail, W M, 1971. "A General Approximation to the Distribution of Instrumental Variables Estimates," Econometrica, Econometric Society, vol. 39(1), pages 131-169, January.
    10. Nelson, Charles R & Startz, Richard, 1990. "The Distribution of the Instrumental Variables Estimator and Its t-Ratio When the Instrument Is a Poor One," The Journal of Business, University of Chicago Press, vol. 63(1), pages 125-140, January.
    11. Phillips, P C B, 1980. "The Exact Distribution of Instrumental Variable Estimators in an Equation Containing n + 1 Endogenous Variables," Econometrica, Econometric Society, vol. 48(4), pages 861-878, May.
    12. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    13. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-529, October.
    14. John C. Chao & Norman R. Swanson, 2005. "Consistent Estimation with a Large Number of Weak Instruments," Econometrica, Econometric Society, vol. 73(5), pages 1673-1692, September.
    15. Jinyong Hahn & Jerry Hausman, 2002. "A New Specification Test for the Validity of Instrumental Variables," Econometrica, Econometric Society, vol. 70(1), pages 163-189, January.
    16. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
    17. Choi, In & Phillips, Peter C. B., 1992. "Asymptotic and finite sample distribution theory for IV estimators and tests in partially identified structural equations," Journal of Econometrics, Elsevier, vol. 51(1-2), pages 113-150.
    18. Jiahui Wang & Eric Zivot, 1998. "Inference on Structural Parameters in Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 66(6), pages 1389-1404, November.
    19. Jinyong Hahn & Jerry Hausman, 2003. "Weak Instruments: Diagnosis and Cures in Empirical Econometrics," American Economic Review, American Economic Association, vol. 93(2), pages 118-125, May.
    20. Anderson, T W & Sawa, Takamitsu, 1979. "Evaluation of the Distribution Function of the Two-Stage Least Squares Estimate," Econometrica, Econometric Society, vol. 47(1), pages 163-182, January.
    21. Frank Kleibergen, 2002. "Pivotal Statistics for Testing Structural Parameters in Instrumental Variables Regression," Econometrica, Econometric Society, vol. 70(5), pages 1781-1803, September.
    22. John C. Chao & Norman R. Swanson, 2003. "Asymptotic Normality of Single-Equation Estimators for the Case with a Large Number of Weak Instruments," Departmental Working Papers 200312, Rutgers University, Department of Economics.
    23. Anderson, T W & Sawa, Takamitsu, 1973. "Distributions of Estimates of Coefficients of a Single Equation in a Simultaneous System and Their Asymptotic Expansions," Econometrica, Econometric Society, vol. 41(4), pages 683-714, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Russell Davidson & James G. MacKinnon, 2008. "Bootstrap inference in a linear equation estimated by instrumental variables," Econometrics Journal, Royal Economic Society, vol. 11(3), pages 443-477, November.
    2. Adrian Pagan, 2007. "Weak instruments (in Russian)," Quantile, Quantile, issue 2, pages 71-81, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D. S. Poskitt & C. L. Skeels, 2004. "Approximating the Distribution of the Instrumental Variables Estimator when the Concentration Parameter is Small," Monash Econometrics and Business Statistics Working Papers 19/04, Monash University, Department of Econometrics and Business Statistics.
    2. Poskitt, D.S. & Skeels, C.L., 2007. "Approximating the distribution of the two-stage least squares estimator when the concentration parameter is small," Journal of Econometrics, Elsevier, vol. 139(1), pages 217-236, July.
    3. Richard Startz & Charles Nelson & Eric Zivot, 1999. "Improved Inference for the Instrumental Variable Estimator," Working Papers 0039, University of Washington, Department of Economics.
    4. Bekker, Paul A. & Lawford, Steve, 2008. "Symmetry-based inference in an instrumental variable setting," Journal of Econometrics, Elsevier, vol. 142(1), pages 28-49, January.
    5. Dufour, Jean-Marie & Taamouti, Mohamed, 2007. "Further results on projection-based inference in IV regressions with weak, collinear or missing instruments," Journal of Econometrics, Elsevier, vol. 139(1), pages 133-153, July.
    6. repec:bla:ecorec:v:91:y:2015:i::p:1-24 is not listed on IDEAS
    7. Dufour, Jean-Marie & Khalaf, Lynda & Kichian, Maral, 2006. "Inflation dynamics and the New Keynesian Phillips Curve: An identification robust econometric analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1707-1727.
    8. Aviv Nevo & Adam M. Rosen, 2012. "Identification With Imperfect Instruments," The Review of Economics and Statistics, MIT Press, vol. 94(3), pages 659-671, August.
    9. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    10. Doko Tchatoka, Firmin Sabro & Dufour, Jean-Marie, 2008. "Instrument endogeneity and identification-robust tests: some analytical results," MPRA Paper 29613, University Library of Munich, Germany.
    11. Donald W.K. Andrews & James H. Stock, 2005. "Inference with Weak Instruments," NBER Technical Working Papers 0313, National Bureau of Economic Research, Inc.
    12. Doko Tchatoka, Firmin, 2011. "Testing for partial exogeneity with weak identification," MPRA Paper 39504, University Library of Munich, Germany, revised Mar 2012.
    13. Dufour, Jean-Marie, 2001. "Logique et tests d’hypothèses," L'Actualité Economique, Société Canadienne de Science Economique, vol. 77(2), pages 171-190, juin.
    14. D.S. Poskitt & C.L. Skeels, 2002. "Assessing Instrumental Variable Relevance:An Alternative Measure and Some Exact Finite Sample Theory," Department of Economics - Working Papers Series 862, The University of Melbourne.
    15. Joel L. Horowitz, 2018. "Non-Asymptotic Inference in Instrumental Variables Estimation," Papers 1809.03600, arXiv.org.
    16. Markus Frölich & Michael Lechner, 2004. "Regional treatment intensity as an instrument for the evaluation of labour market policies," University of St. Gallen Department of Economics working paper series 2004 2004-08, Department of Economics, University of St. Gallen.
    17. Chao, John & Swanson, Norman R., 2007. "Alternative approximations of the bias and MSE of the IV estimator under weak identification with an application to bias correction," Journal of Econometrics, Elsevier, vol. 137(2), pages 515-555, April.
    18. Murray Michael P., 2017. "Linear Model IV Estimation When Instruments Are Many or Weak," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    19. Guo, Zijian & Kang, Hyunseung & Cai, T. Tony & Small, Dylan S., 2018. "Testing endogeneity with high dimensional covariates," Journal of Econometrics, Elsevier, vol. 207(1), pages 175-187.
    20. DUFOUR, Jean-Marie, 2001. "Logique et tests d'hypotheses: reflexions sur les problemes mal poses en econometrie," Cahiers de recherche 2001-15, Universite de Montreal, Departement de sciences economiques.
    21. Jinyong Hahn & Jerry Hausman & Guido Kuersteiner, 2005. "Bias Corrected Instrumental Variables Estimation for Dynamic Panel Models with Fixed E¤ects," Boston University - Department of Economics - Working Papers Series WP2005-024, Boston University - Department of Economics.

    More about this item

    Keywords

    IV estimator; concentration parameter; small concentration asymptotics; hypothesis testing; confidence region construction; valid inference.;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C16 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Econometric and Statistical Methods; Specific Distributions
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2005-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.