IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Identification with Imperfect Instruments

  • Aviv Nevo
  • Adam M. Rosen

Dealing with endogenous regressors is a central challenge of applied research. The standard solution is to use instrumental variables that are assumed to be uncorrelated with unobservables. We instead assume (i) the correlation between the instrument and the error term has the same sign as the correlation between the endogenous regressor and the error term, and (ii) that the instrument is less correlated with the error term than is the endogenous regressor. Using these assumptions, we derive analytic bounds for the parameters. We demonstrate the method in two applications.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.nber.org/papers/w14434.pdf
Download Restriction: no

Paper provided by National Bureau of Economic Research, Inc in its series NBER Working Papers with number 14434.

as
in new window

Length:
Date of creation: Oct 2008
Date of revision:
Publication status: published as Aviv Nevo & Adam M. Rosen, 2012. "Identification With Imperfect Instruments," The Review of Economics and Statistics, MIT Press, vol. 94(3), pages 659-671, August.
Handle: RePEc:nbr:nberwo:14434
Note: IO PR TWP
Contact details of provider: Postal:
National Bureau of Economic Research, 1050 Massachusetts Avenue Cambridge, MA 02138, U.S.A.

Phone: 617-868-3900
Web page: http://www.nber.org
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Jorg Stoye, 2009. "More on Confidence Intervals for Partially Identified Parameters," Econometrica, Econometric Society, vol. 77(4), pages 1299-1315, 07.
  2. Steve Bond & Måns Söderbom, 2005. "Adjustment costs and the identification of Cobb Douglas production functions," IFS Working Papers W05/04, Institute for Fiscal Studies.
  3. Donald W.K. Andrews & Patrik Guggenberger, 2007. "Validity of Subsampling and "Plug-in Asymptotic" Inference for Parameters Defined by Moment Inequalities," Cowles Foundation Discussion Papers 1620, Cowles Foundation for Research in Economics, Yale University.
  4. Jean-Marie Dufour & Mohamed Taamouti, 2003. "Projection-Based Statistical Inference in Linear Structural Models with Possibly Weak Instruments," CIRANO Working Papers 2003s-39, CIRANO.
  5. Nelson, C. & Startz, R., 1988. "Some Furthere Results On The Exact Small Sample Properties Of The Instrumental Variable Estimator," Discussion Papers in Economics at the University of Washington 88-06, Department of Economics at the University of Washington.
  6. R Blundell & Steven Bond, . "Initial conditions and moment restrictions in dynamic panel data model," Economics Papers W14&104., Economics Group, Nuffield College, University of Oxford.
  7. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," Review of Economic Studies, Oxford University Press, vol. 58(2), pages 277-297.
  8. Andrews, Donald W.K. & Marmer, Vadim, 2008. "Exactly distribution-free inference in instrumental variables regression with possibly weak instruments," Journal of Econometrics, Elsevier, vol. 142(1), pages 183-200, January.
  9. Rothenberg, Thomas J., 1984. "Approximating the distributions of econometric estimators and test statistics," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 15, pages 881-935 Elsevier.
  10. Douglas Staiger & James H. Stock, 1994. "Instrumental Variables Regression with Weak Instruments," NBER Technical Working Papers 0151, National Bureau of Economic Research, Inc.
  11. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-29, October.
  12. Nevo, Aviv, 1998. "Measuring Market Power in the Ready-To-Eat Cereal Industry," Research Reports 25164, University of Connecticut, Food Marketing Policy Center.
  13. Zvi Griliches & Jacques Mairesse, 1995. "Production Functions: The Search for Identification," NBER Working Papers 5067, National Bureau of Economic Research, Inc.
  14. Charles F. Manski & John V. Pepper, 1998. "Monotone Instrumental Variables with an Application to the Returns to Schooling," NBER Technical Working Papers 0224, National Bureau of Economic Research, Inc.
  15. Victor Chernozhukov & Sokbae Lee & Adam Rosen, 2011. "Intersection bounds: estimation and inference," CeMMAP working papers CWP34/11, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  16. Jinyong Hahn & Jerry Hausman, 2002. "A New Specification Test for the Validity of Instrumental Variables," Econometrica, Econometric Society, vol. 70(1), pages 163-189, January.
  17. Frank Kleibergen, 2005. "Testing Parameters in GMM Without Assuming that They Are Identified," Econometrica, Econometric Society, vol. 73(4), pages 1103-1123, 07.
  18. Ackerberg, Daniel & Caves, Kevin & Frazer, Garth, 2006. "Structural identification of production functions," MPRA Paper 38349, University Library of Munich, Germany.
  19. Klepper, Steven & Leamer, Edward E, 1984. "Consistent Sets of Estimates for Regressions with Errors in All Variables," Econometrica, Econometric Society, vol. 52(1), pages 163-83, January.
  20. Cattaneo, Matias D. & Crump, Richard K. & Jansson, Michael, 2012. "Optimal inference for instrumental variables regression with non-Gaussian errors," Journal of Econometrics, Elsevier, vol. 167(1), pages 1-15.
  21. Jinyong Hahn & Jerry Hausman, 2003. "Weak Instruments: Diagnosis and Cures in Empirical Econometrics," American Economic Review, American Economic Association, vol. 93(2), pages 118-125, May.
  22. Victor Chernozhukov & Han Hong & Elie Tamer, 2007. "Estimation and Confidence Regions for Parameter Sets in Econometric Models," Econometrica, Econometric Society, vol. 75(5), pages 1243-1284, 09.
  23. Patrik Buggenberger & Richard Smith, 2003. "Generalized empirical likelihood estimators and tests under partial, weak and strong identification," CeMMAP working papers CWP08/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  24. repec:adr:anecst:y:1994:i:34 is not listed on IDEAS
  25. Edward E. Leamer, 1979. "Is it a Demand Curve, or is it a Supply Curve?: Partial Identification Through Inequality Constraints," UCLA Economics Working Papers 153, UCLA Department of Economics.
  26. Jiahui Wang & Eric Zivot, 1998. "Inference on Structural Parameters in Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 66(6), pages 1389-1404, November.
  27. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
  28. Dufour, Jean-Marie & Jasiak, Joann, 2001. "Finite Sample Limited Information Inference Methods for Structural Equations and Models with Generated Regressors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(3), pages 815-43, August.
  29. Jerry Hausman & Gregory Leonard & J. Douglas Zona, 1994. "Competitive Analysis with Differentiated Products," Annals of Economics and Statistics, GENES, issue 34, pages 143-157.
  30. Donald W. K. Andrews & Marcelo J. Moreira & James H. Stock, 2006. "Optimal Two-Sided Invariant Similar Tests for Instrumental Variables Regression," Econometrica, Econometric Society, vol. 74(3), pages 715-752, 05.
  31. Phillips, P.C.B., 1989. "Partially Identified Econometric Models," Econometric Theory, Cambridge University Press, vol. 5(02), pages 181-240, August.
  32. James H. Stock & Jonathan Wright, 2000. "GMM with Weak Identification," Econometrica, Econometric Society, vol. 68(5), pages 1055-1096, September.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:nbr:nberwo:14434. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.