IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Identification With Imperfect Instruments

Listed author(s):
  • Aviv Nevo

    (Northwestern University and NBER)

  • Adam M. Rosen

    (UCL, IFS, and CEMMAP)

Dealing with endogenous regressors is a central challenge of applied research. The standard solution is to use instrumental variables that are assumed to be uncorrelated with unobservables. We instead allow the instrumental variable to be correlated with the error term, but we assume the correlation between the instrumental variable and the error term has the same sign as the correlation between the endogenous regressor and the error term and that the instrumental variable is less correlated with the error term than is the endogenous regressor. Using these assumptions, we derive analytic bounds for the parameters. We demonstrate that the method can generate useful (set) estimates by using it to estimate demand for differentiated products. © 2012 The President and Fellows of Harvard College and the Massachusetts Institute of Technology.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.mitpressjournals.org/doi/pdf/10.1162/REST_a_00171
File Function: link to full text PDF
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by MIT Press in its journal Review of Economics and Statistics.

Volume (Year): 94 (2012)
Issue (Month): 3 (August)
Pages: 659-671

as
in new window

Handle: RePEc:tpr:restat:v:94:y:2012:i:3:p:659-671
Contact details of provider: Web page: http://mitpress.mit.edu/journals/

Order Information: Web: http://mitpress.mit.edu/journal-home.tcl?issn=00346535

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window

  1. Nevo, Aviv, 1998. "Measuring Market Power in the Ready-To-Eat Cereal Industry," Food Marketing Policy Center Research Reports 037, University of Connecticut, Department of Agricultural and Resource Economics, Charles J. Zwick Center for Food and Resource Policy.
  2. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
  3. Jean-Marie Dufour & Mohamed Taamouti, 2003. "Projection-Based Statistical Inference in Linear Structural Models with Possibly Weak Instruments," CIRANO Working Papers 2003s-39, CIRANO.
  4. Victor Chernozhukov & Sokbae Lee & Adam Rosen, 2009. "Intersection Bounds: estimation and inference," CeMMAP working papers CWP19/09, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  5. Rothenberg, Thomas J., 1984. "Approximating the distributions of econometric estimators and test statistics," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 15, pages 881-935 Elsevier.
  6. Dufour, Jean-Marie & Jasiak, Joann, 2001. "Finite Sample Limited Information Inference Methods for Structural Equations and Models with Generated Regressors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(3), pages 815-843, August.
  7. Jinyong Hahn & Jerry Hausman, 2003. "Weak Instruments: Diagnosis and Cures in Empirical Econometrics," American Economic Review, American Economic Association, vol. 93(2), pages 118-125, May.
  8. Steve Bond & Måns Söderbom, 2005. "Adjustment costs and the identification of Cobb Douglas production functions," IFS Working Papers W05/04, Institute for Fiscal Studies.
  9. Nelson, Charles R & Startz, Richard, 1990. "Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 58(4), pages 967-976, July.
  10. Douglas Staiger & James H. Stock, 1994. "Instrumental Variables Regression with Weak Instruments," NBER Technical Working Papers 0151, National Bureau of Economic Research, Inc.
  11. Guggenberger, Patrik & Smith, Richard J., 2005. "Generalized Empirical Likelihood Estimators And Tests Under Partial, Weak, And Strong Identification," Econometric Theory, Cambridge University Press, vol. 21(04), pages 667-709, August.
  12. Peter C.B. Phillips, 1987. "Partially Identified Econometric Models," Cowles Foundation Discussion Papers 845R, Cowles Foundation for Research in Economics, Yale University, revised Aug 1988.
  13. Andrews, Donald W.K. & Marmer, Vadim, 2008. "Exactly distribution-free inference in instrumental variables regression with possibly weak instruments," Journal of Econometrics, Elsevier, vol. 142(1), pages 183-200, January.
  14. Mathias D. Cattaneo & Richard K. Crump & Michael Jansson, 2007. "Optimal Inference for Instrumental Variables Regression with non-Gaussian Errors," CREATES Research Papers 2007-11, Department of Economics and Business Economics, Aarhus University.
  15. James H. Stock & Jonathan Wright, 2000. "GMM with Weak Identification," Econometrica, Econometric Society, vol. 68(5), pages 1055-1096, September.
  16. Edward E. Leamer, 1979. "Is it a Demand Curve, or is it a Supply Curve?: Partial Identification Through Inequality Constraints," UCLA Economics Working Papers 153, UCLA Department of Economics.
  17. Frank Kleibergen, 2005. "Testing Parameters in GMM Without Assuming that They Are Identified," Econometrica, Econometric Society, vol. 73(4), pages 1103-1123, 07.
  18. Donald W. K. Andrews & Marcelo J. Moreira & James H. Stock, 2006. "Optimal Two-Sided Invariant Similar Tests for Instrumental Variables Regression," Econometrica, Econometric Society, vol. 74(3), pages 715-752, 05.
  19. Z, Griliches & Jacques Mairesse, 1997. "Production Functions : The Search for Identification," Working Papers 97-30, Centre de Recherche en Economie et Statistique.
  20. Jinyong Hahn & Jerry Hausman, 1999. "A New Specification Test for the Validity of Instrumental Variables," Working papers 99-11, Massachusetts Institute of Technology (MIT), Department of Economics.
  21. Charles F. Manski & John V. Pepper, 1998. "Monotone Instrumental Variables: With an Application to the Returns to Schooling," Virginia Economics Online Papers 308, University of Virginia, Department of Economics.
  22. Donald W.K. Andrews & Patrik Guggenberger, 2007. "Validity of Subsampling and "Plug-in Asymptotic" Inference for Parameters Defined by Moment Inequalities," Cowles Foundation Discussion Papers 1620, Cowles Foundation for Research in Economics, Yale University.
  23. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," Review of Economic Studies, Oxford University Press, vol. 58(2), pages 277-297.
  24. Ackerberg, Daniel & Caves, Kevin & Frazer, Garth, 2006. "Structural identification of production functions," MPRA Paper 38349, University Library of Munich, Germany.
  25. Jiahui Wang & Eric Zivot, 1998. "Inference on Structural Parameters in Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 66(6), pages 1389-1404, November.
  26. repec:adr:anecst:y:1994:i:34 is not listed on IDEAS
  27. Klepper, Steven & Leamer, Edward E, 1984. "Consistent Sets of Estimates for Regressions with Errors in All Variables," Econometrica, Econometric Society, vol. 52(1), pages 163-183, January.
  28. Jörg Stoye, 2008. "More on confidence intervals for partially identified parameters," CeMMAP working papers CWP11/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  29. Jerry Hausman & Gregory Leonard & J. Douglas Zona, 1994. "Competitive Analysis with Differentiated Products," Annals of Economics and Statistics, GENES, issue 34, pages 143-157.
  30. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-529, October.
  31. Victor Chernozhukov & Han Hong & Elie Tamer, 2007. "Estimation and Confidence Regions for Parameter Sets in Econometric Models," Econometrica, Econometric Society, vol. 75(5), pages 1243-1284, 09.
  32. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:tpr:restat:v:94:y:2012:i:3:p:659-671. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Kristin Waites)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.