IDEAS home Printed from https://ideas.repec.org/a/adr/anecst/y2019i134p79-108.html

Non-Standard Confidence Sets for Ratios and Tipping Points with Applications to Dynamic Panel Data

Author

Listed:
  • Jean-Thomas Bernard
  • Ba Chu
  • Lynda Khalaf
  • Marcel Voia

Abstract

We study estimation uncertainty when the object of interest contains one or more ratios of parameters. The ratio of parameters is a discontinuous parameter transformation; it has been shown that traditional confidence intervals often fail to cover a true ratio with reliable probability. Constructing confidence sets for ratios using Fieller s method is a viable solution as the method can avoid the discontinuity problem. This paper proposes an extension of the multivariate Fieller method beyond standard contexts, focusing on asymptotically mixed normal estimators that commonly arise in dynamic regressions with persistent covariates. We show that the asymptotic distribution of the pivotal statistic used for constructing a Fieller s confidence set remains a standard Chi-squared; and in many instances, the Wald-type test statistic ‘self-normalizes’ and thus the rates of convergence need not be known. An extensive simulation study illustrates the finite sample properties of the proposed method using both the Pooled Mean Group (PMG) estimator and Arellano and Bond s (1991) (AnB) estimator in a dynamic polynomial panel regression. Our method is demonstrated to work well in small samples, even in some persistent contexts.

Suggested Citation

  • Jean-Thomas Bernard & Ba Chu & Lynda Khalaf & Marcel Voia, 2019. "Non-Standard Confidence Sets for Ratios and Tipping Points with Applications to Dynamic Panel Data," Annals of Economics and Statistics, GENES, issue 134, pages 79-108.
  • Handle: RePEc:adr:anecst:y:2019:i:134:p:79-108
    DOI: 10.15609/annaeconstat2009.134.0079
    as

    Download full text from publisher

    File URL: https://www.jstor.org/stable/10.15609/annaeconstat2009.134.0079
    Download Restriction: no

    File URL: https://libkey.io/10.15609/annaeconstat2009.134.0079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean-Marie Dufour & Emmanuel Flachaire & Lynda Khalaf & Abdallah Zalghout, 2020. "Identification-Robust Inequality Analysis," Cahiers de recherche 03-2020, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    2. Jean-Marie Dufour & Emmanuel Flachaire & Lynda Khalaf & Abdallah Zalghout, 2024. "Identification-robust methods for comparing inequality with an application to regional disparities," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 22(2), pages 433-452, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:adr:anecst:y:2019:i:134:p:79-108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Secretariat General or Laurent Linnemer (email available below). General contact details of provider: https://edirc.repec.org/data/ensaefr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.