IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Identification with imperfect instruments

Listed author(s):
  • Aviv Nevo*

    ()

    (Institute for Fiscal Studies and Berkeley)

  • Adam Rosen

    ()

    (Institute for Fiscal Studies and cemmap and UCL)

Dealing with endogenous regressors is a central challenge of applied research. The standard solution is to use instrumental variables that are assumed to be uncorrelated with unobservables. We instead assume (i) the correlation between the instrument and the error term has the same sign as the correlation between the endogenous regressor and the error term, and (ii) that the instrument is less correlated with the error term than is the endogenous regressor. Using these assumptions, we derive analytic bounds for the parameters. We demonstrate the method in two applications.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://cemmap.ifs.org.uk/wps/cwp1608.pdf
Download Restriction: no

Paper provided by Centre for Microdata Methods and Practice, Institute for Fiscal Studies in its series CeMMAP working papers with number CWP16/08.

as
in new window

Length:
Date of creation: 27 Jun 2008
Handle: RePEc:ifs:cemmap:16/08
Contact details of provider: Postal:
The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE

Phone: (+44) 020 7291 4800
Fax: (+44) 020 7323 4780
Web page: http://cemmap.ifs.org.uk
Email:


More information through EDIRC

Order Information: Postal: The Institute for Fiscal Studies 7 Ridgmount Street LONDON WC1E 7AE
Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Richard Blundell & Steve Bond, 1995. "Initial conditions and moment restrictions in dynamic panel data models," IFS Working Papers W95/17, Institute for Fiscal Studies.
  2. DUFOUR, Jean-Marie & TAAMOUTI, Mohamed, 2003. "Projection-Based Statistical Inference in Linear Structural Models with Possibly Weak Instruments," Cahiers de recherche 08-2003, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  3. Guggenberger, Patrik & Smith, Richard J., 2005. "Generalized Empirical Likelihood Estimators And Tests Under Partial, Weak, And Strong Identification," Econometric Theory, Cambridge University Press, vol. 21(04), pages 667-709, August.
  4. Rothenberg, Thomas J., 1984. "Approximating the distributions of econometric estimators and test statistics," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 15, pages 881-935 Elsevier.
  5. Zvi Griliches & Jacques Mairesse, 1995. "Production Functions: The Search for Identification," NBER Working Papers 5067, National Bureau of Economic Research, Inc.
  6. Frank Kleibergen, 2005. "Testing Parameters in GMM Without Assuming that They Are Identified," Econometrica, Econometric Society, vol. 73(4), pages 1103-1123, 07.
  7. Edward E. Leamer, 1979. "Is it a Demand Curve, or is it a Supply Curve?: Partial Identification Through Inequality Constraints," UCLA Economics Working Papers 153, UCLA Department of Economics.
  8. Peter C.B. Phillips, 1987. "Partially Identified Econometric Models," Cowles Foundation Discussion Papers 845R, Cowles Foundation for Research in Economics, Yale University, revised Aug 1988.
  9. Nevo, Aviv, 1998. "Measuring Market Power in the Ready-To-Eat Cereal Industry," Food Marketing Policy Center Research Reports 037, University of Connecticut, Department of Agricultural and Resource Economics, Charles J. Zwick Center for Food and Resource Policy.
  10. Charles F. Manski & John V. Pepper, 1998. "Monotone Instrumental Variables with an Application to the Returns to Schooling," NBER Technical Working Papers 0224, National Bureau of Economic Research, Inc.
  11. Cattaneo, Matias D. & Crump, Richard K. & Jansson, Michael, 2012. "Optimal inference for instrumental variables regression with non-Gaussian errors," Journal of Econometrics, Elsevier, vol. 167(1), pages 1-15.
  12. Victor Chernozhukov & Sokbae Lee & Adam Rosen, 2012. "Intersection bounds: estimation and inference," CeMMAP working papers CWP33/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  13. Victor Chernozhukov & Han Hong & Elie Tamer, 2007. "Estimation and Confidence Regions for Parameter Sets in Econometric Models," Econometrica, Econometric Society, vol. 75(5), pages 1243-1284, 09.
  14. Andrews, Donald W.K. & Guggenberger, Patrik, 2009. "Validity Of Subsampling And “Plug-In Asymptotic” Inference For Parameters Defined By Moment Inequalities," Econometric Theory, Cambridge University Press, vol. 25(03), pages 669-709, June.
  15. Jerry Hausman & Gregory Leonard & J. Douglas Zona, 1994. "Competitive Analysis with Differentiated Products," Annals of Economics and Statistics, GENES, issue 34, pages 143-157.
  16. Donald W. K. Andrews & Marcelo J. Moreira & James H. Stock, 2006. "Optimal Two-Sided Invariant Similar Tests for Instrumental Variables Regression," Econometrica, Econometric Society, vol. 74(3), pages 715-752, 05.
  17. Jinyong Hahn & Jerry Hausman, 2003. "Weak Instruments: Diagnosis and Cures in Empirical Econometrics," American Economic Review, American Economic Association, vol. 93(2), pages 118-125, May.
  18. Andrews, Donald W.K. & Marmer, Vadim, 2008. "Exactly distribution-free inference in instrumental variables regression with possibly weak instruments," Journal of Econometrics, Elsevier, vol. 142(1), pages 183-200, January.
  19. Jiahui Wang & Eric Zivot, 1998. "Inference on Structural Parameters in Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 66(6), pages 1389-1404, November.
  20. James H. Stock & Jonathan Wright, 2000. "GMM with Weak Identification," Econometrica, Econometric Society, vol. 68(5), pages 1055-1096, September.
  21. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-529, October.
  22. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
  23. Nelson, C. & Startz, R., 1988. "Some Furthere Results On The Exact Small Sample Properties Of The Instrumental Variable Estimator," Working Papers 88-06, University of Washington, Department of Economics.
  24. Dufour, Jean-Marie & Jasiak, Joann, 2001. "Finite Sample Limited Information Inference Methods for Structural Equations and Models with Generated Regressors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(3), pages 815-843, August.
  25. Ackerberg, Daniel & Caves, Kevin & Frazer, Garth, 2006. "Structural identification of production functions," MPRA Paper 38349, University Library of Munich, Germany.
  26. Steve Bond & Måns Söderbom, 2005. "Adjustment costs and the identification of Cobb Douglas production functions," IFS Working Papers W05/04, Institute for Fiscal Studies.
  27. repec:adr:anecst:y:1994:i:34 is not listed on IDEAS
  28. Jorg Stoye, 2009. "More on Confidence Intervals for Partially Identified Parameters," Econometrica, Econometric Society, vol. 77(4), pages 1299-1315, 07.
  29. Jinyong Hahn & Jerry Hausman, 2002. "A New Specification Test for the Validity of Instrumental Variables," Econometrica, Econometric Society, vol. 70(1), pages 163-189, January.
  30. Klepper, Steven & Leamer, Edward E, 1984. "Consistent Sets of Estimates for Regressions with Errors in All Variables," Econometrica, Econometric Society, vol. 52(1), pages 163-183, January.
  31. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," Review of Economic Studies, Oxford University Press, vol. 58(2), pages 277-297.
  32. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:16/08. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Emma Hyman)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.