IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v189y2015i1p207-228.html
   My bibliography  Save this article

Robust inference in nonlinear models with mixed identification strength

Author

Listed:
  • Cheng, Xu

Abstract

The paper studies inference in regression models composed of nonlinear functions with unknown transformation parameters and loading coefficients that measure the importance of each component. In these models, non-identification and weak identification present in multiple parts of the parameter space, resulting in mixed identification strength for different unknown parameters. This paper proposes robust tests and confidence intervals for sub-vectors and linear functions of the unknown parameters. In particular, the results cover applications where some nuisance parameters are non-identified under the null (Davies (1977, 1987)) and some nuisance parameters are subject to a full range of identification strength. To construct this robust inference procedure, we develop a local limit theory that models mixed identification strength. The asymptotic results involve both inconsistent estimators that depend on a localization parameter and consistent estimators with different rates of convergence. A sequential argument is used to peel the criterion function based on identification strength of the parameters.

Suggested Citation

  • Cheng, Xu, 2015. "Robust inference in nonlinear models with mixed identification strength," Journal of Econometrics, Elsevier, vol. 189(1), pages 207-228.
  • Handle: RePEc:eee:econom:v:189:y:2015:i:1:p:207-228
    DOI: 10.1016/j.jeconom.2015.07.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407615002055
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Andrews, Donald W.K. & Guggenberger, Patrik, 2009. "Validity Of Subsampling And “Plug-In Asymptotic” Inference For Parameters Defined By Moment Inequalities," Econometric Theory, Cambridge University Press, vol. 25(03), pages 669-709, June.
    2. Frédérique Bec & Mélika Ben Salem & Marine Carrasco, 2010. "Detecting Mean Reversion in Real Exchange Rates from a Multiple Regime star Model," Annals of Economics and Statistics, GENES, issue 99-100, pages 395-427.
    3. Jean-Marie Dufour & Mohamed Taamouti, 2005. "Projection-Based Statistical Inference in Linear Structural Models with Possibly Weak Instruments," Econometrica, Econometric Society, vol. 73(4), pages 1351-1365, July.
    4. Nelson, Charles R & Startz, Richard, 1990. "Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 58(4), pages 967-976, July.
    5. Guggenberger, Patrik & Smith, Richard J., 2005. "Generalized Empirical Likelihood Estimators And Tests Under Partial, Weak, And Strong Identification," Econometric Theory, Cambridge University Press, vol. 21(04), pages 667-709, August.
    6. repec:eee:econom:v:200:y:2017:i:1:p:17-35 is not listed on IDEAS
    7. Marcelo J. Moreira, 2003. "A Conditional Likelihood Ratio Test for Structural Models," Econometrica, Econometric Society, vol. 71(4), pages 1027-1048, July.
    8. Andrews, Donald W.K. & Cheng, Xu, 2013. "Maximum likelihood estimation and uniform inference with sporadic identification failure," Journal of Econometrics, Elsevier, vol. 173(1), pages 36-56.
    9. Kitamura, Yuichi & Phillips, Peter C. B., 1997. "Fully modified IV, GIVE and GMM estimation with possibly non-stationary regressors and instruments," Journal of Econometrics, Elsevier, vol. 80(1), pages 85-123, September.
    10. Mehmet Caner, 2010. "Testing, Estimation in GMM and CUE with Nearly-Weak Identification," Econometric Reviews, Taylor & Francis Journals, vol. 29(3), pages 330-363.
    11. Andrews, Donald W.K. & Stock, James H., 2007. "Testing with many weak instruments," Journal of Econometrics, Elsevier, vol. 138(1), pages 24-46, May.
    12. Andrews, Donald W.K. & Cheng, Xu, 2014. "Gmm Estimation And Uniform Subvector Inference With Possible Identification Failure," Econometric Theory, Cambridge University Press, vol. 30(02), pages 287-333, April.
    13. Donald W. K. Andrews & Marcelo J. Moreira & James H. Stock, 2006. "Optimal Two-Sided Invariant Similar Tests for Instrumental Variables Regression," Econometrica, Econometric Society, vol. 74(3), pages 715-752, May.
    14. Shintani, Mototsugu & Terada-Hagiwara, Akiko & Yabu, Tomoyoshi, 2013. "Exchange rate pass-through and inflation: A nonlinear time series analysis," Journal of International Money and Finance, Elsevier, vol. 32(C), pages 512-527.
    15. Chen, Xiaohong & Ponomareva, Maria & Tamer, Elie, 2014. "Likelihood inference in some finite mixture models," Journal of Econometrics, Elsevier, vol. 182(1), pages 87-99.
    16. Caves, Douglas W & Christensen, Laurits R & Tretheway, Michael W, 1980. "Flexible Cost Functions for Multiproduct Firms," The Review of Economics and Statistics, MIT Press, vol. 62(3), pages 477-481, August.
    17. Sargan, J D, 1983. "Identification and Lack of Identification," Econometrica, Econometric Society, vol. 51(6), pages 1605-1633, November.
    18. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
    19. Hahn, Jinyong & Kuersteiner, Guido, 2002. "Discontinuities of weak instrument limiting distributions," Economics Letters, Elsevier, vol. 75(3), pages 325-331, May.
    20. McAleer, Michael & Medeiros, Marcelo C., 2008. "A multiple regime smooth transition Heterogeneous Autoregressive model for long memory and asymmetries," Journal of Econometrics, Elsevier, vol. 147(1), pages 104-119, November.
    21. Konstantinos Giannakas & Kien Tran & Vangelis Tzouvelekas, 2000. "Efficiency, technological change and output growth in Greek olive growing farms: a Box-Cox approach," Applied Economics, Taylor & Francis Journals, vol. 32(7), pages 909-916.
    22. Donald W. K. Andrews & Xu Cheng, 2012. "Estimation and Inference With Weak, Semi‐Strong, and Strong Identification," Econometrica, Econometric Society, vol. 80(5), pages 2153-2211, September.
    23. Antoine, Bertille & Renault, Eric, 2012. "Efficient minimum distance estimation with multiple rates of convergence," Journal of Econometrics, Elsevier, vol. 170(2), pages 350-367.
    24. Dijk, Dick van & Franses, Philip Hans, 1999. "Modeling Multiple Regimes in the Business Cycle," Macroeconomic Dynamics, Cambridge University Press, vol. 3(03), pages 311-340, September.
    25. Donald W. K. Andrews & Panle Jia Barwick, 2012. "Inference for Parameters Defined by Moment Inequalities: A Recommended Moment Selection Procedure," Econometrica, Econometric Society, vol. 80(6), pages 2805-2826, November.
    26. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    27. repec:cup:etheor:v:33:y:2017:i:05:p:1046-1080_00 is not listed on IDEAS
    28. Chaudhuri, Saraswata & Zivot, Eric, 2011. "A new method of projection-based inference in GMM with weakly identified nuisance parameters," Journal of Econometrics, Elsevier, vol. 164(2), pages 239-251, October.
    29. Jun Ma & Charles R. Nelson, 2008. "Valid Inference for a Class of Models Where Standard Inference Performs Poorly: Including Nonlinear Regression, ARMA, GARCH, and Unobserved Components," Working Papers UWEC-2008-06-R, University of Washington, Department of Economics, revised Sep 2008.
    30. Shi, Xiaoxia & Phillips, Peter C.B., 2012. "Nonlinear Cointegrating Regression Under Weak Identification," Econometric Theory, Cambridge University Press, vol. 28(03), pages 509-547, June.
    31. Frank Kleibergen, 2002. "Pivotal Statistics for Testing Structural Parameters in Instrumental Variables Regression," Econometrica, Econometric Society, vol. 70(5), pages 1781-1803, September.
    32. repec:adr:anecst:y:2010:i:99-100:p:16 is not listed on IDEAS
    33. Dufour, Jean-Marie & Taamouti, Mohamed, 2007. "Further results on projection-based inference in IV regressions with weak, collinear or missing instruments," Journal of Econometrics, Elsevier, vol. 139(1), pages 133-153, July.
    34. Frank Kleibergen, 2005. "Testing Parameters in GMM Without Assuming that They Are Identified," Econometrica, Econometric Society, vol. 73(4), pages 1103-1123, July.
    35. Nelson, Charles R. & Startz, Richard, 2007. "The zero-information-limit condition and spurious inference in weakly identified models," Journal of Econometrics, Elsevier, vol. 138(1), pages 47-62, May.
    36. Andrews, Donald W K, 1994. "Asymptotics for Semiparametric Econometric Models via Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 62(1), pages 43-72, January.
    37. Phillips, P.C.B., 1989. "Partially Identified Econometric Models," Econometric Theory, Cambridge University Press, vol. 5(02), pages 181-240, August.
    38. Patrik Guggenberger & Frank Kleibergen & Sophocles Mavroeidis & Linchun Chen, 2012. "On the Asymptotic Sizes of Subset Anderson–Rubin and Lagrange Multiplier Tests in Linear Instrumental Variables Regression," Econometrica, Econometric Society, vol. 80(6), pages 2649-2666, November.
    39. Tripathi, Gautam, 1999. "A matrix extension of the Cauchy-Schwarz inequality," Economics Letters, Elsevier, vol. 63(1), pages 1-3, April.
    40. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    41. Andrews, Donald W.K. & Guggenberger, Patrik, 2017. "Asymptotic Size Of Kleibergen’S Lm And Conditional Lr Tests For Moment Condition Models," Econometric Theory, Cambridge University Press, vol. 33(05), pages 1046-1080, October.
    42. Clark, Jeffrey A, 1984. "Estimation of Economies of Scale in Banking Using a Generalized Functional Form," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 16(1), pages 53-68, February.
    43. James H. Stock & Jonathan Wright, 2000. "GMM with Weak Identification," Econometrica, Econometric Society, vol. 68(5), pages 1055-1096, September.
    44. Phillips, Peter C B & Park, Joon Y, 1988. "On the Formulation of Wald Tests of Nonlinear Restrictions," Econometrica, Econometric Society, vol. 56(5), pages 1065-1083, September.
    45. Isaiah Andrews & Anna Mikusheva, 2015. "Maximum likelihood inference in weakly identified dynamic stochastic general equilibrium models," Quantitative Economics, Econometric Society, vol. 6(1), pages 123-152, March.
    46. McCloskey, Adam, 2017. "Bonferroni-based size-correction for nonstandard testing problems," Journal of Econometrics, Elsevier, vol. 200(1), pages 17-35.
    47. Donald W. K. Andrews & Gustavo Soares, 2010. "Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection," Econometrica, Econometric Society, vol. 78(1), pages 119-157, January.
    48. Sims, Christopher A & Stock, James H & Watson, Mark W, 1990. "Inference in Linear Time Series Models with Some Unit Roots," Econometrica, Econometric Society, vol. 58(1), pages 113-144, January.
    49. Zhongjun Qu, 2014. "Inference in dynamic stochastic general equilibrium models with possible weak identification," Quantitative Economics, Econometric Society, vol. 5, pages 457-494, July.
    50. Hansen, Bruce E., 2000. "Testing for structural change in conditional models," Journal of Econometrics, Elsevier, vol. 97(1), pages 93-115, July.
    51. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
    52. Choi, In & Phillips, Peter C. B., 1992. "Asymptotic and finite sample distribution theory for IV estimators and tests in partially identified structural equations," Journal of Econometrics, Elsevier, vol. 51(1-2), pages 113-150.
    53. Andrews, Donald W.K. & Guggenberger, Patrik, 2010. "ASYMPTOTIC SIZE AND A PROBLEM WITH SUBSAMPLING AND WITH THE m OUT OF n BOOTSTRAP," Econometric Theory, Cambridge University Press, vol. 26(02), pages 426-468, April.
    54. Bertille Antoine & Eric Renault, 2009. "Efficient GMM with nearly-weak instruments," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 135-171, January.
    55. Granger, Clive W. J. & Terasvirta, Timo, 1993. "Modelling Non-Linear Economic Relationships," OUP Catalogue, Oxford University Press, number 9780198773207.
    56. repec:adr:anecst:y:2010:i:99-100 is not listed on IDEAS
    57. Donald W. K. Andrews & Patrik Guggenberger, 2009. "Hybrid and Size-Corrected Subsampling Methods," Econometrica, Econometric Society, vol. 77(3), pages 721-762, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. McCloskey, Adam, 2017. "Bonferroni-based size-correction for nonstandard testing problems," Journal of Econometrics, Elsevier, vol. 200(1), pages 17-35.
    2. Gregory Cox, 2018. "Almost Sure Uniqueness of a Global Minimum Without Convexity," Papers 1803.02415, arXiv.org, revised May 2018.

    More about this item

    Keywords

    Mixed rates; Nonlinear regression; Robust inference; Uniformity; Weak identification;

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:189:y:2015:i:1:p:207-228. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.