IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v170y2012i2p350-367.html
   My bibliography  Save this article

Efficient minimum distance estimation with multiple rates of convergence

Author

Listed:
  • Antoine, Bertille
  • Renault, Eric

Abstract

This paper extends the asymptotic theory of GMM inference to allow sample counterparts of the estimating equations to converge at (multiple) rates, different from the usual square-root of the sample size. In this setting, we provide consistent estimation of the structural parameters. In addition, we define a convenient rotation in the parameter space (or reparametrization) to disentangle the different rates of convergence. More precisely, we identify special linear combinations of the structural parameters associated with a specific rate of convergence. Finally, we demonstrate the validity of usual inference procedures, like the overidentification test and Wald test, with standard formulas. It is important to stress that both estimation and testing work without requiring the knowledge of the various rates. However, the assessment of these rates is crucial for (asymptotic) power considerations.

Suggested Citation

  • Antoine, Bertille & Renault, Eric, 2012. "Efficient minimum distance estimation with multiple rates of convergence," Journal of Econometrics, Elsevier, vol. 170(2), pages 350-367.
  • Handle: RePEc:eee:econom:v:170:y:2012:i:2:p:350-367
    DOI: 10.1016/j.jeconom.2012.05.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407612001224
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Patrick Gagliardini & Christian Gourieroux & Eric Renault, 2004. "Efficient Derivative Pricing by Extended Method of Moments," Working Papers 2004-30, Center for Research in Economics and Statistics.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Kotlyarova, Yulia & Zinde-Walsh, Victoria, 2006. "Non- and semi-parametric estimation in models with unknown smoothness," Economics Letters, Elsevier, vol. 93(3), pages 379-386, December.
    4. Kitamura, Yuichi & Phillips, Peter C. B., 1997. "Fully modified IV, GIVE and GMM estimation with possibly non-stationary regressors and instruments," Journal of Econometrics, Elsevier, vol. 80(1), pages 85-123, September.
    5. Sargan, J D, 1983. "Identification and Lack of Identification," Econometrica, Econometric Society, vol. 51(6), pages 1605-1633, November.
    6. Hahn, Jinyong & Kuersteiner, Guido, 2002. "Discontinuities of weak instrument limiting distributions," Economics Letters, Elsevier, vol. 75(3), pages 325-331, May.
    7. Bandi, Federico M. & Phillips, Peter C.B., 2007. "A simple approach to the parametric estimation of potentially nonstationary diffusions," Journal of Econometrics, Elsevier, vol. 137(2), pages 354-395, April.
    8. Caner, Mehmet, 2008. "Nearly-singular design in GMM and generalized empirical likelihood estimators," Journal of Econometrics, Elsevier, vol. 144(2), pages 511-523, June.
    9. Frank Kleibergen, 2005. "Testing Parameters in GMM Without Assuming that They Are Identified," Econometrica, Econometric Society, vol. 73(4), pages 1103-1123, July.
    10. Andrews, Donald W K, 1994. "Asymptotics for Semiparametric Econometric Models via Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 62(1), pages 43-72, January.
    11. Phillips, P.C.B., 1989. "Partially Identified Econometric Models," Econometric Theory, Cambridge University Press, vol. 5(02), pages 181-240, August.
    12. Yacine Aït-Sahalia & Jean Jacod, 2008. "Fisher's Information for Discretely Sampled Lévy Processes," Econometrica, Econometric Society, vol. 76(4), pages 727-761, July.
    13. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-1057, September.
    14. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    15. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    16. Lee, Lung-fei, 2010. "Pooling Estimates With Different Rates Of Convergence: A Minimum Χ2 Approach With Emphasis On A Social Interactions Model," Econometric Theory, Cambridge University Press, vol. 26(01), pages 260-299, February.
    17. Joann Jasiak & Christian Gourieroux, 2006. "Autoregressive gamma processes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(2), pages 129-152.
    18. James H. Stock & Jonathan Wright, 2000. "GMM with Weak Identification," Econometrica, Econometric Society, vol. 68(5), pages 1055-1096, September.
    19. Phillips, Peter C B & Park, Joon Y, 1988. "On the Formulation of Wald Tests of Nonlinear Restrictions," Econometrica, Econometric Society, vol. 56(5), pages 1065-1083, September.
    20. P. Gagliardini & C. Gourieroux & E. Renault, 2011. "Efficient Derivative Pricing by the Extended Method of Moments," Econometrica, Econometric Society, vol. 79(4), pages 1181-1232, July.
    21. Sims, Christopher A & Stock, James H & Watson, Mark W, 1990. "Inference in Linear Time Series Models with Some Unit Roots," Econometrica, Econometric Society, vol. 58(1), pages 113-144, January.
    22. Bertille Antoine & Eric Renault, 2009. "Efficient GMM with nearly-weak instruments," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 135-171, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Inoue, Atsushi & Kilian, Lutz, 2016. "Joint confidence sets for structural impulse responses," Journal of Econometrics, Elsevier, vol. 192(2), pages 421-432.
    2. Guerron-Quintana, Pablo & Inoue, Atsushi & Kilian, Lutz, 2017. "Impulse response matching estimators for DSGE models," Journal of Econometrics, Elsevier, vol. 196(1), pages 144-155.
    3. David T. Frazierz & Éric Renault, 2016. "Efficient Two-Step Estimation via Targeting," CIRANO Working Papers 2016s-16, CIRANO.
    4. Hill, Jonathan B. & Aguilar, Mike, 2013. "Moment condition tests for heavy tailed time series," Journal of Econometrics, Elsevier, vol. 172(2), pages 255-274.
    5. Donna Feir & Thomas Lemieux & Vadim Marmer, 2016. "Weak Identification in Fuzzy Regression Discontinuity Designs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(2), pages 185-196, April.
    6. Simon Freyaldenhoven, 2017. "A Generalized Factor Model with Local Factors," 2017 Papers pfr361, Job Market Papers.
    7. repec:eee:econom:v:201:y:2017:i:2:p:212-227 is not listed on IDEAS
    8. Antoine, Bertille & Lavergne, Pascal, 2014. "Conditional moment models under semi-strong identification," Journal of Econometrics, Elsevier, vol. 182(1), pages 59-69.
    9. Gagliardini, Patrick & Ronchetti, Diego, 2013. "Semi-parametric estimation of American option prices," Journal of Econometrics, Elsevier, vol. 173(1), pages 57-82.
    10. Cheng, Xu, 2015. "Robust inference in nonlinear models with mixed identification strength," Journal of Econometrics, Elsevier, vol. 189(1), pages 207-228.
    11. Zhentao Shi & Huanhuan Zheng, 2018. "Structural Estimation of Behavioral Heterogeneity," Papers 1802.03735, arXiv.org, revised Jun 2018.
    12. Wang, Wenjie & Kaffo, Maximilien, 2016. "Bootstrap inference for instrumental variable models with many weak instruments," Journal of Econometrics, Elsevier, vol. 192(1), pages 231-268.
    13. Krogh, Tord S., 2015. "Macro frictions and theoretical identification of the New Keynesian Phillips curve," Journal of Macroeconomics, Elsevier, vol. 43(C), pages 191-204.
    14. repec:eee:econom:v:204:y:2018:i:2:p:268-300 is not listed on IDEAS

    More about this item

    Keywords

    GMM; Mixed-rates asymptotics; Kernel estimation; Rotation in the coordinate system;

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:170:y:2012:i:2:p:350-367. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.