IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Nearly-singular design in GMM and generalized empirical likelihood estimators

  • Caner, Mehmet

Nearly-Singular design relaxes the nonsingularity assumption of the limit weight matrix in GMM, and the nonsingularity of the limit variance matrix for the first order conditions in GEL. The sample versions of these matrices are nonsingular, but in large samples we assume these sample matrices converge to a singular matrix. This can result in size distortions for the overidentifying restrictions test and large bias for the estimators. This nearly-singular design may occur because of the similar instruments in these matrices. We derive the large sample theory for GMM and GEL estimators under nearly-singular design. The rate of convergence of the estimators is slower than root n.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Econometrics.

Volume (Year): 144 (2008)
Issue (Month): 2 (June)
Pages: 511-523

in new window

Handle: RePEc:eee:econom:v:144:y:2008:i:2:p:511-523
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Bansal, Ravi & Viswanathan, S, 1993. " No Arbitrage and Arbitrage Pricing: A New Approach," Journal of Finance, American Finance Association, vol. 48(4), pages 1231-62, September.
  2. Tauchen, George, 1986. "Statistical Properties of Generalized Method-of-Moments Estimators of Structural Parameters Obtained from Financial Market Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(4), pages 397-416, October.
  3. Mehmet Caner, 2005. "Boundedly Pivotal Structural Change Tests in Continuous Updating GMM with Strong, Weak Identification and Completely Unidentified Cases," Econometrics 0509016, EconWPA.
  4. Joseph G. Altonji & Lewis M. Segal, 1994. "Small sample bias in GMM estimation of covariance structures," Working Paper Series, Macroeconomic Issues 94-8, Federal Reserve Bank of Chicago.
  5. Guido W. Imbens & Phillip Johnson & Richard H. Spady, 1995. "Information Theoretic Approaches to Inference in Moment Condition Models," NBER Technical Working Papers 0186, National Bureau of Economic Research, Inc.
  6. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-80, July.
  7. Guggenberger, Patrik & Smith, Richard J., 2005. "Generalized Empirical Likelihood Estimators And Tests Under Partial, Weak, And Strong Identification," Econometric Theory, Cambridge University Press, vol. 21(04), pages 667-709, August.
  8. Hall, Robert E & Mishkin, Frederic S, 1982. "The Sensitivity of Consumption to Transitory Income: Estimates from Panel Data on Households," Econometrica, Econometric Society, vol. 50(2), pages 461-81, March.
  9. John M. Abowd & David Card, 1986. "Intertemporal Labor Supply and Long Term Employment Contracts," NBER Working Papers 1831, National Bureau of Economic Research, Inc.
  10. Peter C.B. Phillips, 2001. "Regression with Slowly Varying Regressors," Cowles Foundation Discussion Papers 1310, Cowles Foundation for Research in Economics, Yale University.
  11. Andrews, Donald W. K. & Lu, Biao, 2001. "Consistent model and moment selection procedures for GMM estimation with application to dynamic panel data models," Journal of Econometrics, Elsevier, vol. 101(1), pages 123-164, March.
  12. John Y. Campbell & Robert J. Shiller, 1986. "Cointegration and Tests of Present Value Models," Cowles Foundation Discussion Papers 785, Cowles Foundation for Research in Economics, Yale University.
  13. Behrman, Jere R & Rosenzweig, Mark R & Taubman, Paul, 1994. "Endowments and the Allocation of Schooling in the Family and in the Marriage Market: The Twins Experiment," Journal of Political Economy, University of Chicago Press, vol. 102(6), pages 1131-74, December.
  14. Pfanzagl, J. & Wefelmeyer, W., 1978. "A third-order optimum property of the maximum likelihood estimator," Journal of Multivariate Analysis, Elsevier, vol. 8(1), pages 1-29, March.
  15. Kocherlakota, Narayana R., 1990. "On tests of representative consumer asset pricing models," Journal of Monetary Economics, Elsevier, vol. 26(2), pages 285-304, October.
  16. Whitney Newey & Richard Smith, 2003. "Higher order properties of GMM and generalised empirical likelihood estimators," CeMMAP working papers CWP04/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  17. Robert E. Hall, 1987. "Consumption," NBER Working Papers 2265, National Bureau of Economic Research, Inc.
  18. Abowd, John M & Card, David, 1989. "On the Covariance Structure of Earnings and Hours Changes," Econometrica, Econometric Society, vol. 57(2), pages 411-45, March.
  19. Tauchen, George, 1986. "Statistical Properties of Generalized Method-of-Moments Estimators of Structural Parameters Obtained from Financial Market Data: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(4), pages 423-25, October.
  20. Altonji, Joseph G. & Martins, Ana Paula & Siow, Aloysius, 2002. "Dynamic factor models of consumption, hours and income," Research in Economics, Elsevier, vol. 56(1), pages 3-59, June.
  21. Smith, Richard J, 1997. "Alternative Semi-parametric Likelihood Approaches to Generalised Method of Moments Estimation," Economic Journal, Royal Economic Society, vol. 107(441), pages 503-19, March.
  22. James H. Stock & Jonathan Wright, 2000. "GMM with Weak Identification," Econometrica, Econometric Society, vol. 68(5), pages 1055-1096, September.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:144:y:2008:i:2:p:511-523. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.