IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/78980.html
   My bibliography  Save this paper

Fat Tails and Spurious Estimation of Consumption-Based Asset Pricing Models

Author

Listed:
  • Toda, Alexis Akira
  • Walsh, Kieran James

Abstract

The standard generalized method of moments (GMM) estimation of Euler equations in heterogeneous-agent consumption-based asset pricing models is inconsistent under fat tails because the GMM criterion is asymptotically random. To illustrate this, we generate asset returns and consumption data from an incomplete-market dynamic general equilibrium model that is analytically solvable and exhibits power laws in consumption. Monte Carlo experiments suggest that the standard GMM estimation is inconsistent and susceptible to Type II errors (incorrect non-rejection of false models). Estimating an overidentified model by dividing agents into age cohorts appears to mitigate Type I and II errors.

Suggested Citation

  • Toda, Alexis Akira & Walsh, Kieran James, 2016. "Fat Tails and Spurious Estimation of Consumption-Based Asset Pricing Models," MPRA Paper 78980, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:78980
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/78980/1/MPRA_paper_78980.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Blundell,Richard & Newey,Whitney & Persson,Torsten (ed.), 2007. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521692106, January.
    2. Basu, Parantap & Semenov, Andrei & Wada, Kenji, 2011. "Uninsurable risk and financial market puzzles," Journal of International Money and Finance, Elsevier, vol. 30(6), pages 1055-1089, October.
    3. Krueger, Dirk & Lustig, Hanno, 2010. "When is market incompleteness irrelevant for the price of aggregate risk (and when is it not)?," Journal of Economic Theory, Elsevier, vol. 145(1), pages 1-41, January.
    4. Blundell,Richard & Newey,Whitney & Persson,Torsten (ed.), 2007. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521871549, January.
    5. Toda, Alexis Akira, 2017. "A Note On The Size Distribution Of Consumption: More Double Pareto Than Lognormal," Macroeconomic Dynamics, Cambridge University Press, vol. 21(6), pages 1508-1518, September.
    6. Blundell,Richard & Newey,Whitney K. & Persson,Torsten (ed.), 2007. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521871532, January.
    7. Blundell,Richard & Newey,Whitney K. & Persson,Torsten (ed.), 2007. "Advances in Economics and Econometrics," Cambridge Books, Cambridge University Press, number 9780521692090, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019. "Smoothed GMM for quantile models," Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
    2. repec:cdl:ucsdec:qt9k5027d0 is not listed on IDEAS
    3. Warusawitharana, Missaka, 2018. "Time-varying volatility and the power law distribution of stock returns," Journal of Empirical Finance, Elsevier, vol. 49(C), pages 123-141.
    4. repec:cdl:ucsdec:qt90n2h2bb is not listed on IDEAS
    5. Wilson, Matthew S., 2020. "Disaggregation and the equity premium puzzle," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 1-18.
    6. Alexis Akira Toda & Yulong Wang, 2021. "Efficient minimum distance estimation of Pareto exponent from top income shares," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(2), pages 228-243, March.
    7. Mundt, Philipp & Alfarano, Simone & Milaković, Mishael, 2020. "Exploiting ergodicity in forecasts of corporate profitability," Journal of Economic Dynamics and Control, Elsevier, vol. 111(C).
    8. Emilien Gouin-Bonenfant & Alexis Akira Toda, 2019. "Pareto Extrapolation: Bridging Theoretical and Quantitative Models of Wealth Inequality," 2019 Meeting Papers 152, Society for Economic Dynamics.
    9. Toda, Alexis Akira, 2019. "Wealth distribution with random discount factors," Journal of Monetary Economics, Elsevier, vol. 104(C), pages 101-113.
    10. Abootaleb Shirvani & Stoyan V. Stoyanov & Frank J. Fabozzi & Svetlozar T. Rachev, 2021. "Equity premium puzzle or faulty economic modelling?," Review of Quantitative Finance and Accounting, Springer, vol. 56(4), pages 1329-1342, May.
    11. repec:cdl:ucsdec:qt5n29f260 is not listed on IDEAS
    12. de Castro, Luciano & Cundy, Lance D. & Galvao, Antonio F. & Westenberger, Rafael, 2023. "A dynamic quantile model for distinguishing intertemporal substitution from risk aversion," European Economic Review, Elsevier, vol. 159(C).
    13. de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019. "Smoothed GMM for quantile models," Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:cdl:ucsdec:qt8df3x7gw is not listed on IDEAS
    2. Andrea Attar & Thomas Mariotti & François Salanié, 2020. "The Social Costs of Side Trading," The Economic Journal, Royal Economic Society, vol. 130(630), pages 1608-1622.
    3. Xilong Chen & Eric Ghysels, 2011. "News--Good or Bad--and Its Impact on Volatility Predictions over Multiple Horizons," The Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 46-81, October.
    4. Richard Blundell & Joel Horowitz & Matthias Parey, 2022. "Estimation of a Heterogeneous Demand Function with Berkson Errors," The Review of Economics and Statistics, MIT Press, vol. 104(5), pages 877-889, December.
    5. Ralph Stinebrickner & Todd R. Stinebrickner, 2014. "A Major in Science? Initial Beliefs and Final Outcomes for College Major and Dropout," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 81(1), pages 426-472.
    6. Hoderlein, Stefan & White, Halbert, 2012. "Nonparametric identification in nonseparable panel data models with generalized fixed effects," Journal of Econometrics, Elsevier, vol. 168(2), pages 300-314.
    7. Markus Haavio & Kaisa Kotakorpi, 2012. "Sin Licenses Revisited," CESifo Working Paper Series 4010, CESifo.
    8. Almut Veraart & Luitgard Veraart, 2012. "Stochastic volatility and stochastic leverage," Annals of Finance, Springer, vol. 8(2), pages 205-233, May.
    9. Sucarrat, Genaro, 2009. "Forecast Evaluation of Explanatory Models of Financial Variability," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-33.
    10. Heejoon Han & Myung D. Park, 2013. "Comparison of Realized Measure and Implied Volatility in Forecasting Volatility," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(6), pages 522-533, September.
    11. Alvarez, Javier & Arellano, Manuel, 2022. "Robust likelihood estimation of dynamic panel data models," Journal of Econometrics, Elsevier, vol. 226(1), pages 21-61.
    12. repec:spo:wpmain:info:hdl:2441/eu4vqp9ompqllr09ij4j0h0h1 is not listed on IDEAS
    13. Tim Bollerslev & Sophia Zhengzi Li & Viktor Todorov, 2014. "Roughing up Beta: Continuous vs. Discontinuous Betas, and the Cross-Section of Expected Stock Returns," CREATES Research Papers 2014-48, Department of Economics and Business Economics, Aarhus University.
    14. Andersen, Torben G. & Fusari, Nicola & Todorov, Viktor & Varneskov, Rasmus T., 2019. "Unified inference for nonlinear factor models from panels with fixed and large time span," Journal of Econometrics, Elsevier, vol. 212(1), pages 4-25.
    15. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.
    16. Doko Tchatoka, Firmin & Dufour, Jean-Marie, 2020. "Exogeneity tests, incomplete models, weak identification and non-Gaussian distributions: Invariance and finite-sample distributional theory," Journal of Econometrics, Elsevier, vol. 218(2), pages 390-418.
    17. Christian Bontemps & Raquel Menezes Bezerra Sampaio, 2020. "Entry games for the airline industry," Post-Print hal-02137358, HAL.
    18. Jesus M. Carro & Alejandra Traferri, 2014. "State Dependence And Heterogeneity In Health Using A Bias‐Corrected Fixed‐Effects Estimator," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(2), pages 181-207, March.
    19. Bond, Philip & Newman, Andrew F., 2009. "Prohibitions on punishments in private contracts," Journal of Financial Intermediation, Elsevier, vol. 18(4), pages 526-540, October.
    20. Federico M. Bandi & Roberto Reno, 2009. "Nonparametric Stochastic Volatility," Global COE Hi-Stat Discussion Paper Series gd08-035, Institute of Economic Research, Hitotsubashi University.
    21. Sokbae Lee & Bernard Salanié, 2018. "Identifying Effects of Multivalued Treatments," Econometrica, Econometric Society, vol. 86(6), pages 1939-1963, November.
    22. Schumann, Martin & Severini, Thomas A. & Tripathi, Gautam, 2021. "Integrated likelihood based inference for nonlinear panel data models with unobserved effects," Journal of Econometrics, Elsevier, vol. 223(1), pages 73-95.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • D31 - Microeconomics - - Distribution - - - Personal Income and Wealth Distribution
    • D52 - Microeconomics - - General Equilibrium and Disequilibrium - - - Incomplete Markets
    • D58 - Microeconomics - - General Equilibrium and Disequilibrium - - - Computable and Other Applied General Equilibrium Models
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:78980. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.