IDEAS home Printed from https://ideas.repec.org/p/fip/fedawp/2012-17.html
   My bibliography  Save this paper

Robust inference in linear asset pricing models

Author

Listed:
  • Nikolay Gospodinov
  • Raymond Kan
  • Cesare Robotti

Abstract

We derive new results on the asymptotic behavior of the estimated parameters of a linear asset pricing model and their associated t-statistics in the presence of a factor that is independent of the returns. The inclusion of this "useless" factor in the model leads to a violation of the full rank (identification) condition and renders the inference nonstandard. We show that the estimated parameter associated with the useless factor diverges with the sample size but the misspecification-robust t-statistic is still well-behaved and has a standard normal limiting distribution. The asymptotic distributions of the estimates of the remaining parameters and the model specification test are also affected by the presence of a useless factor and are nonstandard. We propose a robust and easy-to-implement model selection procedure that restores the standard inference on the parameters of interest by identifying and removing the factors that do not contribute to improved pricing. The finite-sample properties of our asymptotic approximations and the practical relevance of our results are illustrated using simulations and an empirical application.

Suggested Citation

  • Nikolay Gospodinov & Raymond Kan & Cesare Robotti, 2012. "Robust inference in linear asset pricing models," FRB Atlanta Working Paper 2012-17, Federal Reserve Bank of Atlanta.
  • Handle: RePEc:fip:fedawp:2012-17
    as

    Download full text from publisher

    File URL: http://www.frbatlanta.org/documents/pubs/wp/wp1217.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    2. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    3. Hanno Lustig & Adrien Verdelhan, 2007. "The Cross Section of Foreign Currency Risk Premia and Consumption Growth Risk," American Economic Review, American Economic Association, vol. 97(1), pages 89-117, March.
    4. Ludvigson, Sydney C. & Ng, Serena, 2007. "The empirical risk-return relation: A factor analysis approach," Journal of Financial Economics, Elsevier, vol. 83(1), pages 171-222, January.
    5. Chen, Nai-Fu & Roll, Richard & Ross, Stephen A, 1986. "Economic Forces and the Stock Market," The Journal of Business, University of Chicago Press, vol. 59(3), pages 383-403, July.
    6. Sydney C. Ludvigson & Serena Ng, 2009. "Macro Factors in Bond Risk Premia," Review of Financial Studies, Society for Financial Studies, vol. 22(12), pages 5027-5067, December.
    7. Epstein, Larry G & Zin, Stanley E, 1989. "Substitution, Risk Aversion, and the Temporal Behavior of Consumption and Asset Returns: A Theoretical Framework," Econometrica, Econometric Society, vol. 57(4), pages 937-969, July.
    8. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    9. Motohiro Yogo, 2006. "A Consumption-Based Explanation of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 61(2), pages 539-580, April.
    10. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    11. Kan, Raymond & Robotti, Cesare, 2008. "Specification tests of asset pricing models using excess returns," Journal of Empirical Finance, Elsevier, vol. 15(5), pages 816-838, December.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedawp:2012-17. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Elaine Clokey). General contact details of provider: http://edirc.repec.org/data/frbatus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.