IDEAS home Printed from https://ideas.repec.org/p/nbr/nberte/0186.html
   My bibliography  Save this paper

Information Theoretic Approaches to Inference in Moment Condition Models

Author

Listed:
  • Guido W. Imbens
  • Phillip Johnson
  • Richard H. Spady

Abstract

One-step efficient GMM estimation has been developed in the recent papers of Back and Brown (1990), Imbens (1993) and Qin and Lawless (1994). These papers emphasized methods that correspond to using Owen's (1988) method of empirical likelihood to reweight the data so that the reweighted sample obeys all the moment restrictions at the parameter estimates. In this paper we consider an alternative KLIC motivated weighting and show how it and similar discrete reweightings define a class of unconstrained optimization problems which includes GMM as a special case. Such KLIC-motivated reweightings introduce M auxiliary `tilting' parameters, where M is the number of moments; parameter and overidentification hypotheses can be recast in terms of these tilting parameters. Such tests, when appropriately conditioned on the estimates of the original parameters, are often startlingly more effective than their conventional counterparts. This is apparently due to the local ancillarity of the original parameters for the tilting parameters.

Suggested Citation

  • Guido W. Imbens & Phillip Johnson & Richard H. Spady, 1995. "Information Theoretic Approaches to Inference in Moment Condition Models," NBER Technical Working Papers 0186, National Bureau of Economic Research, Inc.
  • Handle: RePEc:nbr:nberte:0186
    Note: LS
    as

    Download full text from publisher

    File URL: http://www.nber.org/papers/t0186.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Orme, Chris, 1990. "The small-sample performance of the information-matrix test," Journal of Econometrics, Elsevier, vol. 46(3), pages 309-331, December.
    3. Altonji, Joseph G & Segal, Lewis M, 1996. "Small-Sample Bias in GMM Estimation of Covariance Structures," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 353-366, July.
    4. Cosslett, Stephen R, 1981. "Maximum Likelihood Estimator for Choice-Based Samples," Econometrica, Econometric Society, vol. 49(5), pages 1289-1316, September.
    5. Hall, Peter & Horowitz, Joel L, 1996. "Bootstrap Critical Values for Tests Based on Generalized-Method-of-Moments Estimators," Econometrica, Econometric Society, vol. 64(4), pages 891-916, July.
    6. Newey, Whitney K. & McFadden, Daniel, 1986. "Large sample estimation and hypothesis testing," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 36, pages 2111-2245, Elsevier.
    7. Newey, Whitney K, 1985. "Maximum Likelihood Specification Testing and Conditional Moment Tests," Econometrica, Econometric Society, vol. 53(5), pages 1047-1070, September.
    8. Tauchen, George, 1985. "Diagnostic testing and evaluation of maximum likelihood models," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 415-443.
    9. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    10. K. Newey, Whitney, 1985. "Generalized method of moments specification testing," Journal of Econometrics, Elsevier, vol. 29(3), pages 229-256, September.
    11. Back, Kerry & Brown, David P, 1993. "Implied Probabilities in GMM Estimators," Econometrica, Econometric Society, vol. 61(4), pages 971-975, July.
    12. Andrew Chesher & Richard J. Smith, 1997. "Likelihood Ratio Specification Tests," Econometrica, Econometric Society, vol. 65(3), pages 627-646, May.
    13. Chesher, Andrew & Spady, Richard, 1991. "Asymptotic Expansions of the Information Matrix Test Statistic," Econometrica, Econometric Society, vol. 59(3), pages 787-815, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hahn, Jinyong & Newey, Whitney K. & Smith, Richard J., 2014. "Neglected heterogeneity in moment condition models," Journal of Econometrics, Elsevier, vol. 178(P1), pages 86-100.
    2. Smith, Richard J., 2011. "Gel Criteria For Moment Condition Models," Econometric Theory, Cambridge University Press, vol. 27(6), pages 1192-1235, December.
    3. Joachim Inkmann, 2000. "Finite Sample Properties of One-Step, Two-Step and Bootstrap Empirical Likelihood Approaches to Efficient GMM Estimation," Econometric Society World Congress 2000 Contributed Papers 0332, Econometric Society.
    4. Shane M. Sherlund, 2004. "Quasi Empirical Likelihood Estimation of Moment Condition Models," Econometric Society 2004 North American Summer Meetings 507, Econometric Society.
    5. Li, Yong & Yu, Jun & Zeng, Tao, 2018. "Specification tests based on MCMC output," Journal of Econometrics, Elsevier, vol. 207(1), pages 237-260.
    6. Joaquim Ramalho, 2003. "Small Sample Bias of Alternative Estimation Methods for Moment Condition Models: Monte Carlo Evidence for Covariance Structures and Instrumental Variables," Economics Working Papers 9_2003, University of Évora, Department of Economics (Portugal).
    7. Prosper Dovonon, 2016. "Large Sample Properties of the Three-Step Euclidean Likelihood Estimators under Model Misspecification," Econometric Reviews, Taylor & Francis Journals, vol. 35(4), pages 465-514, April.
    8. Ramalho Joaquim J.S., 2005. "Small Sample Bias of Alternative Estimation Methods for Moment Condition Models: Monte Carlo Evidence for Covariance Structures," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(1), pages 1-20, March.
    9. Frank Kleibergen, 2004. "Expansions of GMM statistics that indicate their properties under weak and/or many instruments and the bootstrap," Econometric Society 2004 North American Summer Meetings 408, Econometric Society.
    10. Jeffrey M. Wooldridge, 2004. "Estimating average partial effects under conditional moment independence assumptions," CeMMAP working papers CWP03/04, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Parente, Paulo M.D.C. & Smith, Richard J., 2011. "Gel Methods For Nonsmooth Moment Indicators," Econometric Theory, Cambridge University Press, vol. 27(1), pages 74-113, February.
    12. Amengual, Dante & Fiorentini, Gabriele & Sentana, Enrique, 2013. "Sequential estimation of shape parameters in multivariate dynamic models," Journal of Econometrics, Elsevier, vol. 177(2), pages 233-249.
    13. Lô, Serigne N. & Ronchetti, Elvezio, 2012. "Robust small sample accurate inference in moment condition models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3182-3197.
    14. Smith, Richard J., 2005. "Automatic Positive Semidefinite Hac Covariance Matrix And Gmm Estimation," Econometric Theory, Cambridge University Press, vol. 21(1), pages 158-170, February.
    15. Antoine, Bertille & Bonnal, Helene & Renault, Eric, 2007. "On the efficient use of the informational content of estimating equations: Implied probabilities and Euclidean empirical likelihood," Journal of Econometrics, Elsevier, vol. 138(2), pages 461-487, June.
    16. Gregory, Allan W. & Lamarche, Jean-Francois & Smith, Gregor W., 2002. "Information-theoretic estimation of preference parameters: macroeconomic applications and simulation evidence," Journal of Econometrics, Elsevier, vol. 107(1-2), pages 213-233, March.
    17. Lee, Seojeong, 2016. "Asymptotic refinements of a misspecification-robust bootstrap for GEL estimators," Journal of Econometrics, Elsevier, vol. 192(1), pages 86-104.
    18. Gagliardini, Patrick & Trojani, Fabio & Urga, Giovanni, 2005. "Robust GMM tests for structural breaks," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 139-182.
    19. Hill, Jonathan B. & Prokhorov, Artem, 2016. "GEL estimation for heavy-tailed GARCH models with robust empirical likelihood inference," Journal of Econometrics, Elsevier, vol. 190(1), pages 18-45.
    20. Jungbin Hwang & Byunghoon Kang & Seojeong Lee, 2019. "A Doubly Corrected Robust Variance Estimator for Linear GMM," Papers 1908.07821, arXiv.org, revised May 2020.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nbr:nberte:0186. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (email available below). General contact details of provider: https://edirc.repec.org/data/nberrus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.