IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/19-08.html
   My bibliography  Save this paper

GEL methods for non-smooth moment indicators

Author

Listed:
  • Paulo Parente

    (Institute for Fiscal Studies)

  • Richard Smith

    () (Institute for Fiscal Studies and University of Cambridge)

Abstract

This paper considers the first order large sample properties of the GEL class of estimators for models specified by non-smooth indicators. The GEL class includes a number of estimators recently introduced as alternatives to the efficient GMM estimator which may suffer from substantial biases in finite samples. These include EL, ET and the CUE. This paper also establishes the validity of tests suggested in the smooth moment indicators case for over-dentifying restrictions and specification. In particular, a number of these tests avoid the necessity of providing an estimator for the Jacobian matrix which may be problematic for the sample sizes typically encountered in practice.

Suggested Citation

  • Paulo Parente & Richard Smith, 2008. "GEL methods for non-smooth moment indicators," CeMMAP working papers CWP19/08, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:19/08
    as

    Download full text from publisher

    File URL: http://cemmap.ifs.org.uk/wps/cwp1908.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Joel L. Horowitz, 1998. "Bootstrap Methods for Median Regression Models," Econometrica, Econometric Society, vol. 66(6), pages 1327-1352, November.
    3. Whitney K. Newey & Richard J. Smith, 2004. "Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators," Econometrica, Econometric Society, vol. 72(1), pages 219-255, January.
    4. Guggenberger, Patrik & Smith, Richard J., 2005. "Generalized Empirical Likelihood Estimators And Tests Under Partial, Weak, And Strong Identification," Econometric Theory, Cambridge University Press, vol. 21(04), pages 667-709, August.
    5. Brown, Bryan W & Newey, Whitney K, 2002. "Generalized Method of Moments, Efficient Bootstrapping, and Improved Inference," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 507-517, October.
    6. Fitzenberger, Bernd, 1998. "The moving blocks bootstrap and robust inference for linear least squares and quantile regressions," Journal of Econometrics, Elsevier, vol. 82(2), pages 235-287, February.
    7. Smith, Richard J, 1997. "Alternative Semi-parametric Likelihood Approaches to Generalised Method of Moments Estimation," Economic Journal, Royal Economic Society, vol. 107(441), pages 503-519, March.
    8. Whang, Yoon-Jae, 2006. "Smoothed Empirical Likelihood Methods For Quantile Regression Models," Econometric Theory, Cambridge University Press, vol. 22(02), pages 173-205, April.
    9. Newey, Whitney K & West, Kenneth D, 1987. "Hypothesis Testing with Efficient Method of Moments Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 28(3), pages 777-787, October.
    10. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-1057, September.
    11. Tauchen, George, 1985. "Diagnostic testing and evaluation of maximum likelihood models," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 415-443.
    12. Koenker,Roger, 2005. "Quantile Regression," Cambridge Books, Cambridge University Press, number 9780521845731, March.
    13. Donald W. K. Andrews, 1997. "A Stopping Rule for the Computation of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 65(4), pages 913-932, July.
    14. Powell, James L., 1984. "Least absolute deviations estimation for the censored regression model," Journal of Econometrics, Elsevier, vol. 25(3), pages 303-325, July.
    15. Guido W. Imbens & Richard H. Spady & Phillip Johnson, 1998. "Information Theoretic Approaches to Inference in Moment Condition Models," Econometrica, Econometric Society, vol. 66(2), pages 333-358, March.
    16. Kemp, GCR, 2007. "Gel Estimation and Inference with Non-Smooth Moment Indicators and Dynamic Data," Economics Discussion Papers 2890, University of Essex, Department of Economics.
    17. Guido W. Imbens, 1997. "One-Step Estimators for Over-Identified Generalized Method of Moments Models," Review of Economic Studies, Oxford University Press, vol. 64(3), pages 359-383.
    18. Otsu, Taisuke, 2008. "Conditional empirical likelihood estimation and inference for quantile regression models," Journal of Econometrics, Elsevier, vol. 142(1), pages 508-538, January.
    19. Peter Christoffersen & Jinyong Hahn & Atsushi Inoue, 1999. "Testing, Comparing, and Combining Value at Risk Measures," Center for Financial Institutions Working Papers 99-44, Wharton School Center for Financial Institutions, University of Pennsylvania.
    20. Pollard, David, 1985. "New Ways to Prove Central Limit Theorems," Econometric Theory, Cambridge University Press, vol. 1(03), pages 295-313, December.
    21. Honore, Bo E & Hu, Luojia, 2004. "On the Performance of Some Robust Instrumental Variables Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 30-39, January.
    22. Whitney K. Newey & Joaquim J. S. Ramalho Ramalho & Richard Smith, 2003. "Asymptotic bias for GMM and GEL estimators with estimated nuisance parameters," CeMMAP working papers CWP05/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    23. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    24. Weiss, Andrew A., 1991. "Estimating Nonlinear Dynamic Models Using Least Absolute Error Estimation," Econometric Theory, Cambridge University Press, vol. 7(01), pages 46-68, March.
    25. Joaquim J.S. Ramalho & Richard J. Smith, 2005. "Goodness of Fit Tests for Moment Condition Models," Economics Working Papers 5_2005, University of √Čvora, Department of Economics (Portugal).
    26. Powell, James L., 1986. "Censored regression quantiles," Journal of Econometrics, Elsevier, vol. 32(1), pages 143-155, June.
    27. Arulampalam, W. & Robin A. Naylor & Jeremy P. Smith, 2002. "University of Warwick," Royal Economic Society Annual Conference 2002 9, Royal Economic Society.
    28. Chernozhukov, Victor & Hong, Han, 2003. "An MCMC approach to classical estimation," Journal of Econometrics, Elsevier, vol. 115(2), pages 293-346, August.
    29. Buchinsky, Moshe, 1995. "Estimating the asymptotic covariance matrix for quantile regression models a Monte Carlo study," Journal of Econometrics, Elsevier, vol. 68(2), pages 303-338, August.
    30. Yuichi Kitamura, 2001. "Asymptotic Optimality of Empirical Likelihood for Testing Moment Restrictions," Econometrica, Econometric Society, vol. 69(6), pages 1661-1672, November.
    31. Newey, Whitney K, 1985. "Maximum Likelihood Specification Testing and Conditional Moment Tests," Econometrica, Econometric Society, vol. 53(5), pages 1047-1070, September.
    32. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    33. Davidson, Russel & MacKinnon, James G., 1983. "Small sample properties of alternative forms of the Lagrange Multiplier test," Economics Letters, Elsevier, vol. 12(3-4), pages 269-275.
    34. Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Otsu, Taisuke, 2008. "Conditional empirical likelihood estimation and inference for quantile regression models," Journal of Econometrics, Elsevier, vol. 142(1), pages 508-538, January.
    2. Hill, Jonathan B. & Prokhorov, Artem, 2016. "GEL estimation for heavy-tailed GARCH models with robust empirical likelihood inference," Journal of Econometrics, Elsevier, vol. 190(1), pages 18-45.
    3. Hill, Jonathan B., 2015. "Robust Generalized Empirical Likelihood for heavy tailed autoregressions with conditionally heteroscedastic errors," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 131-152.
    4. Tong Tong Wu & Gang Li & Chengyong Tang, 2015. "Empirical Likelihood for Censored Linear Regression and Variable Selection," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(3), pages 798-812, September.
    5. repec:eee:econom:v:200:y:2017:i:1:p:1-16 is not listed on IDEAS
    6. F Bravo, 2008. "Effcient M-estimators with auxiliary information," Discussion Papers 08/26, Department of Economics, University of York.
    7. Feng, Qiang, 2012. "A GEL-based AIC for model selection," Economics Letters, Elsevier, vol. 116(3), pages 637-639.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:19/08. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Emma Hyman). General contact details of provider: http://edirc.repec.org/data/cmifsuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.