IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/08-03.html
   My bibliography  Save this paper

Generalized empirical likelihood estimators and tests under partial, weak and strong identification

Author

Listed:
  • Patrik Buggenberger

    (Institute for Fiscal Studies)

  • Richard Smith

    (Institute for Fiscal Studies and University of Cambridge)

Abstract

The principal purpose of this paper is to describe the performance of generalized empirical likelihood (GEL) methods for time series instrumental variable models specified by nonlinear moment restrictions when identification may be weak. The paper makes two main contributions. Firstly, we show that all GEL estimators are first-order equivalent under weak identification. The GEL estimator under weak identification is inconsistent and has a nonstandard asymptotic distribution. Secondly, the paper proposes new GEL test statistics, which have chi-square asymptotic null distributions independent of the strength or weakness of identification. Consequently, unlike those for Wald and likelihood ratio statistics, the size of tests formed from these statistics is not distorted by the strength or weakness of iden- tification. Modified versions of the statistics are presented for tests of hypotheses on parameter subvectors when the parameters not under test are strongly identified. Monte Carlo results for the linear instrumental variable regression model suggest that tests based on these statistics have very good size properties even in the presence of conditional heteroskedasticity. The tests have competitive power properties, especially for thick tailed or asymmetric error distributions.

Suggested Citation

  • Patrik Buggenberger & Richard Smith, 2003. "Generalized empirical likelihood estimators and tests under partial, weak and strong identification," CeMMAP working papers CWP08/03, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:08/03
    as

    Download full text from publisher

    File URL: http://cemmap.ifs.org.uk/wps/cwp0308.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Whitney K. Newey & Richard J. Smith, 2004. "Higher Order Properties of Gmm and Generalized Empirical Likelihood Estimators," Econometrica, Econometric Society, vol. 72(1), pages 219-255, January.
    2. Phillips, P.C.B., 1989. "Partially Identified Econometric Models," Econometric Theory, Cambridge University Press, vol. 5(2), pages 181-240, August.
    3. Newey, Whitney K & West, Kenneth D, 1987. "Hypothesis Testing with Efficient Method of Moments Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 28(3), pages 777-787, October.
    4. Bryan W. Brown & Whitney K. Newey, 1998. "Efficient Semiparametric Estimation of Expectations," Econometrica, Econometric Society, vol. 66(2), pages 453-464, March.
    5. Marcelo J. Moreira, 2003. "A Conditional Likelihood Ratio Test for Structural Models," Econometrica, Econometric Society, vol. 71(4), pages 1027-1048, July.
    6. Pakes, Ariel & Pollard, David, 1989. "Simulation and the Asymptotics of Optimization Estimators," Econometrica, Econometric Society, vol. 57(5), pages 1027-1057, September.
    7. Yuichi Kitamura & Michael Stutzer, 1997. "An Information-Theoretic Alternative to Generalized Method of Moments Estimation," Econometrica, Econometric Society, vol. 65(4), pages 861-874, July.
    8. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    9. K. Newey, Whitney, 1985. "Generalized method of moments specification testing," Journal of Econometrics, Elsevier, vol. 29(3), pages 229-256, September.
    10. Stock, James H & Wright, Jonathan H & Yogo, Motohiro, 2002. "A Survey of Weak Instruments and Weak Identification in Generalized Method of Moments," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 518-529, October.
    11. Smith, Richard J., 2011. "Gel Criteria For Moment Condition Models," Econometric Theory, Cambridge University Press, vol. 27(6), pages 1192-1235, December.
    12. Guido W. Imbens & Richard H. Spady & Phillip Johnson, 1998. "Information Theoretic Approaches to Inference in Moment Condition Models," Econometrica, Econometric Society, vol. 66(2), pages 333-358, March.
    13. James H. Stock & Jonathan Wright, 2000. "GMM with Weak Identification," Econometrica, Econometric Society, vol. 68(5), pages 1055-1096, September.
    14. Mehmet Caner, 2010. "Exponential Tilting with Weak Instruments: Estimation and Testing," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 72(3), pages 307-325, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guggenberger, Patrik & Ramalho, Joaquim J.S. & Smith, Richard J., 2012. "GEL statistics under weak identification," Journal of Econometrics, Elsevier, vol. 170(2), pages 331-349.
    2. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    3. Mardi Dungey & Vitali Alexeev & Jing Tian & Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91, pages 1-24, June.
    4. Richard Smith, 2005. "Weak instruments and empirical likelihood: a discussion of the papers by DWK Andrews and JH Stock and Y Kitamura," CeMMAP working papers CWP13/05, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Frank Kleibergen, 2004. "Expansions of GMM statistics that indicate their properties under weak and/or many instruments and the bootstrap," Econometric Society 2004 North American Summer Meetings 408, Econometric Society.
    6. Chaudhuri, Saraswata & Renault, Eric, 2020. "Score tests in GMM: Why use implied probabilities?," Journal of Econometrics, Elsevier, vol. 219(2), pages 260-280.
    7. Camponovo, Lorenzo & Matsushita, Yukitoshi & Otsu, Taisuke, 2021. "Relative error accurate statistic based on nonparametric likelihood," LSE Research Online Documents on Economics 107521, London School of Economics and Political Science, LSE Library.
    8. Hahn, Jinyong & Newey, Whitney K. & Smith, Richard J., 2014. "Neglected heterogeneity in moment condition models," Journal of Econometrics, Elsevier, vol. 178(P1), pages 86-100.
    9. Horowitz, Joel L., 2021. "Bounding the difference between true and nominal rejection probabilities in tests of hypotheses about instrumental variables models," Journal of Econometrics, Elsevier, vol. 222(2), pages 1057-1082.
    10. Joel L. Horowitz, 2017. "Non-asymptotic inference in instrumental variables estimation," CeMMAP working papers CWP46/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Guggenberger, Patrik & Smith, Richard J., 2008. "Generalized empirical likelihood tests in time series models with potential identification failure," Journal of Econometrics, Elsevier, vol. 142(1), pages 134-161, January.
    12. Joel L. Horowitz, 2018. "Non-Asymptotic Inference in Instrumental Variables Estimation," Papers 1809.03600, arXiv.org.
    13. Joel L. Horowitz, 2018. "Non-asymptotic inference in instrumental variables estimation," CeMMAP working papers CWP52/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    14. Hill, Jonathan B. & Prokhorov, Artem, 2016. "GEL estimation for heavy-tailed GARCH models with robust empirical likelihood inference," Journal of Econometrics, Elsevier, vol. 190(1), pages 18-45.
    15. Joachim Inkmann, 2010. "Estimating Firm Size Elasticities of Product and Process R&D," Economica, London School of Economics and Political Science, vol. 77(306), pages 384-402, April.
    16. Richard Startz & Charles Nelson & Eric Zivot, 1999. "Improved Inference for the Instrumental Variable Estimator," Working Papers 0039, University of Washington, Department of Economics.
    17. Tchatoka, Firmin Doko, 2015. "Subset Hypotheses Testing And Instrument Exclusion In The Linear Iv Regression," Econometric Theory, Cambridge University Press, vol. 31(6), pages 1192-1228, December.
    18. Dovonon, Prosper & Hall, Alastair R. & Kleibergen, Frank, 2020. "Inference in second-order identified models," Journal of Econometrics, Elsevier, vol. 218(2), pages 346-372.
    19. Patrik Guggenberger & Jinyong Hahn, 2005. "Finite Sample Properties of the Two-Step Empirical Likelihood Estimator," Econometric Reviews, Taylor & Francis Journals, vol. 24(3), pages 247-263.
    20. Doko Tchatoka, Firmin, 2011. "Testing for partial exogeneity with weak identification," MPRA Paper 39504, University Library of Munich, Germany, revised Mar 2012.

    More about this item

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C31 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions; Social Interaction Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:08/03. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/cmifsuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emma Hyman (email available below). General contact details of provider: https://edirc.repec.org/data/cmifsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.