IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Semi-Parametric Weak Instrument Regressions with an Application to the Risk-Return Trade-off

  • Benoit Perron

Recent work shows that a low correlation between the instruments and the included variables leads to serious inference problems. We extend the local-to-zero analysis of models with weak instruments to models with estimated instruments and regressors and with higher-order dependence between instruments and disturbances. This framework is applicable to linear models with expectation variables that are estimated non-parametrically such as the risk-return trade-off in finance and the impact of inflation uncertainty on real economic activity. Our simulation evidence suggests that Lagrange Multiplier (LM) confidence intervals have better coverage in these models. We apply these methods to excess returns on the S&P 500 index, yen-dollar spot returns, and excess holding yields between 6-month and 3-month Treasury bills. Des recherches récentes démontrent qu'une corrélation faible entre les instruments et les variables explicatives peut mener à de sérieux problèmes d'inférence dans les régressions avec variables instrumentales. Nous étendons l'analyse locale à zéro des modèles avec instruments faibles aux modèles avec des instruments et régresseurs estimés et avec de la dépendance dans les moments supérieurs. Ainsi, cet environnement devient applicable aux modèles linéaires avec des variables anticipatoires qui sont estimées de façon non paramétrique. Deux exemples de tels modèles sont la relation entre le risque et les rendements en finance et l'impact de l'incertitude de l'inflation sur l'activité économique réelle. Nos résultats démontrent que l'inférence basée sur les tests du multiplicateur de Lagrange (LM) est plus robuste à la présence d'instruments faibles que l'inférence basée sur les tests de Wald. En utilisant des intervalles de confiance construits selon les tests de LM, nous concluons qu'il n'y a pas de prime de risque significative dans les rendements de l'indice S&P 500, les rendements excédentaires entre les Bons du Trésor de 6 mois et de 3 mois et les rendements du taux de change spot entre le yen japonais et le dollar américain.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.cirano.qc.ca/files/publications/2002s-88.pdf
Download Restriction: no

Paper provided by CIRANO in its series CIRANO Working Papers with number 2002s-88.

as
in new window

Length: 53 pages
Date of creation: 01 Nov 2002
Date of revision:
Handle: RePEc:cir:cirwor:2002s-88
Contact details of provider: Postal: 1130 rue Sherbrooke Ouest, suite 1400, Montréal, Quéc, H3A 2M8
Phone: (514) 985-4000
Fax: (514) 985-4039
Web page: http://www.cirano.qc.ca/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
  2. Andrews, Donald W K, 1994. "Asymptotics for Semiparametric Econometric Models via Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 62(1), pages 43-72, January.
  3. Charles R. Nelson & Richard Startz & Eric Zivot, 1996. "Valid Confidence Intervals and Inference in the Presence of Weak Instruments," Econometrics 9612002, EconWPA.
  4. Alastair R. Hall & Glenn D. Rudebusch & David W. Wilcox, 1994. "Judging instrument relevance in instrumental variables estimation," Finance and Economics Discussion Series 94-3, Board of Governors of the Federal Reserve System (U.S.).
  5. Backus, David K. & Gregory, Allan W. & Zin, Stanley E., 1989. "Risk premiums in the term structure : Evidence from artificial economies," Journal of Monetary Economics, Elsevier, vol. 24(3), pages 371-399, November.
  6. Torben G. Andersen & Tim Bollerslev, 1997. "Answering the Critics: Yes, ARCH Models Do Provide Good Volatility Forecasts," NBER Working Papers 6023, National Bureau of Economic Research, Inc.
  7. Charles R. Nelson & Richard Startz, 1988. "The Distribution of the Instrumental Variables Estimator and Its t-RatioWhen the Instrument is a Poor One," NBER Technical Working Papers 0069, National Bureau of Economic Research, Inc.
  8. Engle, Robert F & Lilien, David M & Robins, Russell P, 1987. "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model," Econometrica, Econometric Society, vol. 55(2), pages 391-407, March.
  9. repec:cup:etheor:v:11:y:1995:i:3:p:560-96 is not listed on IDEAS
  10. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
  11. Phillips, P.C.B., 1989. "Partially Identified Econometric Models," Econometric Theory, Cambridge University Press, vol. 5(02), pages 181-240, August.
  12. Dufour, J.M., 1995. "Some Impossibility Theorems in Econometrics with Applications to Instrumental Variables, Dynamic Models and Cointegration," Cahiers de recherche 9539, Universite de Montreal, Departement de sciences economiques.
  13. Richard Startz & Charles Nelson & Eric Zivot, 1999. "Improved Inference for the Instrumental Variable Estimator," Working Papers 0039, University of Washington, Department of Economics.
  14. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  15. Robert F. Engle & Victor K. Ng, 1991. "Measuring and Testing the Impact of News on Volatility," NBER Working Papers 3681, National Bureau of Economic Research, Inc.
  16. Sentana, Enrique & Wadhwani, Sushil, 1991. "Semi-parametric Estimation and the Predictability of Stock Market Returns: Some Lessons from Japan," Review of Economic Studies, Wiley Blackwell, vol. 58(3), pages 547-63, May.
  17. In Choi & Peter C.B. Phillips, 1989. "Asymptotic and Finite Sample Distribution Theory for IV Estimators and Tests in Partially Identified Structural Equations," Cowles Foundation Discussion Papers 929, Cowles Foundation for Research in Economics, Yale University.
  18. Jean-Marie Dufour & Joanna Jasiak, 2000. "Finite Sample Inference Methods for Simultaneous Equations and Models with Unobserved and Generated Regressors," CIRANO Working Papers 2000s-13, CIRANO.
  19. Pagan, Adrian, 1984. "Econometric Issues in the Analysis of Regressions with Generated Regressors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 25(1), pages 221-47, February.
  20. Backus, David K & Gregory, Allan W, 1993. "Theoretical Relations between Risk Premiums and Conditional Variances," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 177-85, April.
  21. James H. Stock & Jonathan Wright, 2000. "GMM with Weak Identification," Econometrica, Econometric Society, vol. 68(5), pages 1055-1096, September.
  22. Pagan, Adrian & Ullah, Aman, 1988. "The Econometric Analysis of Models with Risk Terms," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 3(2), pages 87-105, April.
  23. Froot, Kenneth A & Thaler, Richard H, 1990. "Foreign Exchange," Journal of Economic Perspectives, American Economic Association, vol. 4(3), pages 179-92, Summer.
  24. Masry, Elias & Tjøstheim, Dag, 1995. "Nonparametric Estimation and Identification of Nonlinear ARCH Time Series Strong Convergence and Asymptotic Normality: Strong Convergence and Asymptotic Normality," Econometric Theory, Cambridge University Press, vol. 11(02), pages 258-289, February.
  25. Jiahui Wang & Eric Zivot, 1998. "Inference on Structural Parameters in Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 66(6), pages 1389-1404, November.
  26. Douglas Staiger & James H. Stock, 1994. "Instrumental Variables Regression with Weak Instruments," NBER Technical Working Papers 0151, National Bureau of Economic Research, Inc.
  27. Andrews, Donald W.K., 1995. "Nonparametric Kernel Estimation for Semiparametric Models," Econometric Theory, Cambridge University Press, vol. 11(03), pages 560-586, June.
  28. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2002s-88. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.