IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/2002s-88.html
   My bibliography  Save this paper

Semi-Parametric Weak Instrument Regressions with an Application to the Risk-Return Trade-off

Author

Listed:
  • Benoit Perron

Abstract

Recent work shows that a low correlation between the instruments and the included variables leads to serious inference problems. We extend the local-to-zero analysis of models with weak instruments to models with estimated instruments and regressors and with higher-order dependence between instruments and disturbances. This framework is applicable to linear models with expectation variables that are estimated non-parametrically such as the risk-return trade-off in finance and the impact of inflation uncertainty on real economic activity. Our simulation evidence suggests that Lagrange Multiplier (LM) confidence intervals have better coverage in these models. We apply these methods to excess returns on the S&P 500 index, yen-dollar spot returns, and excess holding yields between 6-month and 3-month Treasury bills. Des recherches récentes démontrent qu'une corrélation faible entre les instruments et les variables explicatives peut mener à de sérieux problèmes d'inférence dans les régressions avec variables instrumentales. Nous étendons l'analyse locale à zéro des modèles avec instruments faibles aux modèles avec des instruments et régresseurs estimés et avec de la dépendance dans les moments supérieurs. Ainsi, cet environnement devient applicable aux modèles linéaires avec des variables anticipatoires qui sont estimées de façon non paramétrique. Deux exemples de tels modèles sont la relation entre le risque et les rendements en finance et l'impact de l'incertitude de l'inflation sur l'activité économique réelle. Nos résultats démontrent que l'inférence basée sur les tests du multiplicateur de Lagrange (LM) est plus robuste à la présence d'instruments faibles que l'inférence basée sur les tests de Wald. En utilisant des intervalles de confiance construits selon les tests de LM, nous concluons qu'il n'y a pas de prime de risque significative dans les rendements de l'indice S&P 500, les rendements excédentaires entre les Bons du Trésor de 6 mois et de 3 mois et les rendements du taux de change spot entre le yen japonais et le dollar américain.

Suggested Citation

  • Benoit Perron, 2002. "Semi-Parametric Weak Instrument Regressions with an Application to the Risk-Return Trade-off," CIRANO Working Papers 2002s-88, CIRANO.
  • Handle: RePEc:cir:cirwor:2002s-88
    as

    Download full text from publisher

    File URL: https://cirano.qc.ca/files/publications/2002s-88.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Dufour, J.M., 1995. "Some Impossibility Theorems in Econometrics with Applications to Instrumental Variables, Dynamic Models and Cointegration," Cahiers de recherche 9539, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    2. Nelson, Charles R & Startz, Richard, 1990. "The Distribution of the Instrumental Variables Estimator and Its t-Ratio When the Instrument Is a Poor One," The Journal of Business, University of Chicago Press, vol. 63(1), pages 125-140, January.
    3. Andrews, Donald W K, 1994. "Asymptotics for Semiparametric Econometric Models via Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 62(1), pages 43-72, January.
    4. Phillips, P.C.B., 1989. "Partially Identified Econometric Models," Econometric Theory, Cambridge University Press, vol. 5(2), pages 181-240, August.
    5. Hall, Alastair R & Rudebusch, Glenn D & Wilcox, David W, 1996. "Judging Instrument Relevance in Instrumental Variables Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 37(2), pages 283-298, May.
    6. Zivot, Eric & Startz, Richard & Nelson, Charles R, 1998. "Valid Confidence Intervals and Inference in the Presence of Weak Instruments," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 1119-1146, November.
    7. DUFOUR, Jean-Marie & JASIAK, Joanna, 1998. "Finite-Sample Inference Methods for Simultaneous Equations and Models with Unobserved and Generated Regressors," Cahiers de recherche 9812, Universite de Montreal, Departement de sciences economiques.
    8. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    9. Torben G. Andersen & Tim Bollerslev, 1997. "Answering the Critics: Yes, ARCH Models Do Provide Good Volatility Forecasts," NBER Working Papers 6023, National Bureau of Economic Research, Inc.
    10. Backus, David K. & Gregory, Allan W. & Zin, Stanley E., 1989. "Risk premiums in the term structure : Evidence from artificial economies," Journal of Monetary Economics, Elsevier, vol. 24(3), pages 371-399, November.
    11. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
    12. Barnett,William A. & Powell,James & Tauchen,George E. (ed.), 1991. "Nonparametric and Semiparametric Methods in Econometrics and Statistics," Cambridge Books, Cambridge University Press, number 9780521424318, October.
    13. Choi, In & Phillips, Peter C. B., 1992. "Asymptotic and finite sample distribution theory for IV estimators and tests in partially identified structural equations," Journal of Econometrics, Elsevier, vol. 51(1-2), pages 113-150.
    14. Richard Startz & Charles Nelson & Eric Zivot, 1999. "Improved Inference for the Instrumental Variable Estimator," Working Papers 0039, University of Washington, Department of Economics.
    15. Dufour, Jean-Marie & Jasiak, Joann, 2001. "Finite Sample Limited Information Inference Methods for Structural Equations and Models with Generated Regressors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 42(3), pages 815-843, August.
    16. Jiahui Wang & Eric Zivot, 1998. "Inference on Structural Parameters in Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 66(6), pages 1389-1404, November.
    17. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    18. Andrews, Donald W.K., 1995. "Nonparametric Kernel Estimation for Semiparametric Models," Econometric Theory, Cambridge University Press, vol. 11(3), pages 560-586, June.
    19. Backus, David K & Gregory, Allan W, 1993. "Theoretical Relations between Risk Premiums and Conditional Variances," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(2), pages 177-185, April.
    20. Froot, Kenneth A & Thaler, Richard H, 1990. "Foreign Exchange," Journal of Economic Perspectives, American Economic Association, vol. 4(3), pages 179-192, Summer.
    21. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    22. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    23. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    24. Pagan, Adrian & Ullah, Aman, 1988. "The Econometric Analysis of Models with Risk Terms," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 3(2), pages 87-105, April.
    25. Engle, Robert F & Lilien, David M & Robins, Russell P, 1987. "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model," Econometrica, Econometric Society, vol. 55(2), pages 391-407, March.
    26. repec:cup:etheor:v:11:y:1995:i:3:p:560-96 is not listed on IDEAS
    27. James H. Stock & Jonathan Wright, 2000. "GMM with Weak Identification," Econometrica, Econometric Society, vol. 68(5), pages 1055-1096, September.
    28. Enrique Sentana & Sushil Wadhwani, 1991. "Semi-parametric Estimation and the Predictability of Stock Market Returns: Some Lessons from Japan," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(3), pages 547-563.
    29. Pagan, Adrian, 1984. "Econometric Issues in the Analysis of Regressions with Generated Regressors," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 25(1), pages 221-247, February.
    30. Masry, Elias & Tjøstheim, Dag, 1995. "Nonparametric Estimation and Identification of Nonlinear ARCH Time Series Strong Convergence and Asymptotic Normality: Strong Convergence and Asymptotic Normality," Econometric Theory, Cambridge University Press, vol. 11(2), pages 258-289, February.
    31. Barnett,William A. & Powell,James & Tauchen,George E. (ed.), 1991. "Nonparametric and Semiparametric Methods in Econometrics and Statistics," Cambridge Books, Cambridge University Press, number 9780521370905, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean-Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 36(4), pages 767-808, November.
    2. Dufour, Jean-Marie & Taamouti, Mohamed, 2007. "Further results on projection-based inference in IV regressions with weak, collinear or missing instruments," Journal of Econometrics, Elsevier, vol. 139(1), pages 133-153, July.
    3. Jean-Marie Dufour & Mohamed Taamouti, 2005. "Projection-Based Statistical Inference in Linear Structural Models with Possibly Weak Instruments," Econometrica, Econometric Society, vol. 73(4), pages 1351-1365, July.
    4. Jean‐Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 36(4), pages 767-808, November.
    5. Sunita Narang & V. K. Bhalla, 2011. "Risk-Return Trade-Off in Indian Capital Market During Last Two Decades with Special Emphasis on Crisis Period," Annals - Economic and Administrative Series -, Faculty of Business and Administration, University of Bucharest, vol. 5(1), pages 77-98, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dufour, Jean-Marie, 2001. "Logique et tests d’hypothèses," L'Actualité Economique, Société Canadienne de Science Economique, vol. 77(2), pages 171-190, juin.
    2. DUFOUR, Jean-Marie, 2001. "Logique et tests d'hypotheses: reflexions sur les problemes mal poses en econometrie," Cahiers de recherche 2001-15, Universite de Montreal, Departement de sciences economiques.
    3. Richard Startz & Charles Nelson & Eric Zivot, 1999. "Improved Inference for the Instrumental Variable Estimator," Working Papers 0039, University of Washington, Department of Economics.
    4. Dufour, Jean-Marie & Taamouti, Mohamed, 2007. "Further results on projection-based inference in IV regressions with weak, collinear or missing instruments," Journal of Econometrics, Elsevier, vol. 139(1), pages 133-153, July.
    5. Dufour, Jean-Marie & Khalaf, Lynda & Kichian, Maral, 2006. "Inflation dynamics and the New Keynesian Phillips Curve: An identification robust econometric analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1707-1727.
    6. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
    7. DUFOUR, Jean-Marie & JASIAK, Joanna, 1998. "Finite-Sample Inference Methods for Simultaneous Equations and Models with Unobserved and Generated Regressors," Cahiers de recherche 9812, Universite de Montreal, Departement de sciences economiques.
    8. Jean-Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 36(4), pages 767-808, November.
    9. Jean-Marie Dufour & Mohamed Taamouti, 2005. "Projection-Based Statistical Inference in Linear Structural Models with Possibly Weak Instruments," Econometrica, Econometric Society, vol. 73(4), pages 1351-1365, July.
    10. Degiannakis, Stavros & Xekalaki, Evdokia, 2004. "Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review," MPRA Paper 80487, University Library of Munich, Germany.
    11. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038, Elsevier.
    12. Donald W.K. Andrews & James H. Stock, 2005. "Inference with Weak Instruments," NBER Technical Working Papers 0313, National Bureau of Economic Research, Inc.
    13. Chao, John & Swanson, Norman R., 2007. "Alternative approximations of the bias and MSE of the IV estimator under weak identification with an application to bias correction," Journal of Econometrics, Elsevier, vol. 137(2), pages 515-555, April.
    14. D.S. Poskitt & C.L. Skeels, 2005. "Small Concentration Asymptotics and Instrumental Variables Inference," Department of Economics - Working Papers Series 948, The University of Melbourne.
    15. Jean‐Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 36(4), pages 767-808, November.
    16. repec:bla:ecorec:v:91:y:2015:i::p:1-24 is not listed on IDEAS
    17. Alastair R. Hall, 2015. "Econometricians Have Their Moments: GMM at 32," The Economic Record, The Economic Society of Australia, vol. 91(S1), pages 1-24, June.
    18. Jinyong Hahn & Jerry Hausman & Guido Kuersteiner, 2005. "Bias Corrected Instrumental Variables Estimation for Dynamic Panel Models with Fixed E¤ects," Boston University - Department of Economics - Working Papers Series WP2005-024, Boston University - Department of Economics.
    19. D.S. Poskitt & C.L. Skeels, 2002. "Assessing Instrumental Variable Relevance:An Alternative Measure and Some Exact Finite Sample Theory," Department of Economics - Working Papers Series 862, The University of Melbourne.
    20. D. S. Poskitt & C. L. Skeels, 2004. "Approximating the Distribution of the Instrumental Variables Estimator when the Concentration Parameter is Small," Monash Econometrics and Business Statistics Working Papers 19/04, Monash University, Department of Econometrics and Business Statistics.
    21. Li, Qi & Yang, Jian & Hsiao, Cheng & Chang, Young-Jae, 2005. "The relationship between stock returns and volatility in international stock markets," Journal of Empirical Finance, Elsevier, vol. 12(5), pages 650-665, December.

    More about this item

    Keywords

    Instrumental Variables; Weak Instruments; Local-to-Zero Analysis; LM Tests; Wald Tests; Risk Premium; Expectations; Semi-Parametric Models; Kernel; Variables instrumentales; instruments faibles; analyse locale à zéro; tests du multiplicateur de Lagrange; tests de Wald; prime de risque; anticipations; modèles semi-paramétriques; noyau;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2002s-88. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Webmaster (email available below). General contact details of provider: https://edirc.repec.org/data/ciranca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.