IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

Alternative approximations of the bias and MSE of the IV estimator under weak identification with an application to bias correction

  • Chao, John
  • Swanson, Norman R.

We provide analytical formulae for the asymptotic bias (ABIAS) and mean squared error (AMSE) of the IV estimator, and obtain approximations thereof based on an asymptotic scheme which essentially requires the expectation of the first stage F-statistic to converge to a finite (possibly small) positive limit as the number of instruments approaches infinity. The approximations so obtained are shown, via regression analysis, to yield good approximations for ABIAS and AMSE functions, and the AMSE approximation is shown to perform well relative to the approximation of Donald and Newey (2001). Additionally, the manner in which our framework generalizes that of Richardson and Wu (1971) is discussed. One consequence of the asymptotic framework adopted here is that consistent estimators for the ABIAS and AMSE can be obtained. As a result, we are able to construct a number of bias corrected OLS and IV estimators, which we show to be consistent under a sequential asymptotic scheme. These bias-corrected estimators are also robust, in the sense that they remain consistent in a conventional asymptotic setup, where the model is fully identified. A small Monte Carlo experiment documents the relative performance of our bias adjusted estimators versus standard IV, OLS, LIML estimators, and it is shown that our estimators have lower bias than LIML for various levels of endogeneity and instrument relevance.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.sciencedirect.com/science/article/B6VC0-4K48NFT-1/2/b8c1b09b0c521f972db9f1848227e072
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Econometrics.

Volume (Year): 137 (2007)
Issue (Month): 2 (April)
Pages: 515-555

as
in new window

Handle: RePEc:eee:econom:v:137:y:2007:i:2:p:515-555
Contact details of provider: Web page: http://www.elsevier.com/locate/jeconom

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Nelson, Charles R & Startz, Richard, 1990. "Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 58(4), pages 967-76, July.
  2. Alastair Hall & Fernanda P. M. Peixe, 2000. "A Consistent Method for the Selection of Relevant Instruments," Econometric Society World Congress 2000 Contributed Papers 0790, Econometric Society.
  3. Nelson, C. & Startz, R., 1988. "The Distribution Of The Instrumental Variables Estimator And Its T-Ratio When The Instrument Is A Poor One," Discussion Papers in Economics at the University of Washington 88-07, Department of Economics at the University of Washington.
  4. Forchini, G. & Hillier, G.H., 1999. "Conditional inference for possibly unidentified structural equations," Discussion Paper Series In Economics And Econometrics 9906, Economics Division, School of Social Sciences, University of Southampton.
  5. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
  6. Hall, Alastair R & Rudebusch, Glenn D & Wilcox, David W, 1996. "Judging Instrument Relevance in Instrumental Variables Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 37(2), pages 283-98, May.
  7. John Shea, 1997. "Instrument Relevance in Multivariate Linear Models: A Simple Measure," The Review of Economics and Statistics, MIT Press, vol. 79(2), pages 348-352, May.
  8. Phillips, P.C.B., 1989. "Partially Identified Econometric Models," Econometric Theory, Cambridge University Press, vol. 5(02), pages 181-240, August.
  9. Peter C.B. Phillips, 1983. "The Exact Distribution of LIML: II," Cowles Foundation Discussion Papers 663, Cowles Foundation for Research in Economics, Yale University.
  10. Moreira, Marcelo J., 2009. "Tests with correct size when instruments can be arbitrarily weak," Journal of Econometrics, Elsevier, vol. 152(2), pages 131-140, October.
  11. Donald, Stephen G & Newey, Whitney K, 2001. "Choosing the Number of Instruments," Econometrica, Econometric Society, vol. 69(5), pages 1161-91, September.
  12. In Choi & Peter C.B. Phillips, 1989. "Asymptotic and Finite Sample Distribution Theory for IV Estimators and Tests in Partially Identified Structural Equations," Cowles Foundation Discussion Papers 929, Cowles Foundation for Research in Economics, Yale University.
  13. Hillier, Grant H & Kinal, Terrence W & Srivastava, V K, 1984. "On the Moments of Ordinary Least Squares and Instrumental Variables Estimators in a General Structural Equation," Econometrica, Econometric Society, vol. 52(1), pages 185-202, January.
  14. Jinyong Hahn & Jerry Hausman & Guido Kuersteiner, 2005. "Bias Corrected Instrumental Variables Estimation for Dynamic Panel Models with Fixed E¤ects," Boston University - Department of Economics - Working Papers Series WP2005-024, Boston University - Department of Economics.
  15. Jinyong Hahn & Atsushi Inoue, 2002. "A Monte Carlo Comparison Of Various Asymptotic Approximations To The Distribution Of Instrumental Variables Estimators," Econometric Reviews, Taylor & Francis Journals, vol. 21(3), pages 309-336.
  16. Richardson, David H & Wu, De-Min, 1971. "A Note on the Comparison of Ordinary and Two-Stage Least Squares Estimators," Econometrica, Econometric Society, vol. 39(6), pages 973-81, November.
  17. Hahn, Jinyong & Hausman, Jerry, 2002. "Notes on bias in estimators for simultaneous equation models," Economics Letters, Elsevier, vol. 75(2), pages 237-241, April.
  18. Jean-Marie Dufour, 1997. "Some Impossibility Theorems in Econometrics with Applications to Structural and Dynamic Models," Econometrica, Econometric Society, vol. 65(6), pages 1365-1388, November.
  19. Bekker, Paul A, 1994. "Alternative Approximations to the Distributions of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 62(3), pages 657-81, May.
  20. Joshua D. Angrist & Alan B. Krueger, 1995. "Split Sample Instrumental Variables," NBER Technical Working Papers 0150, National Bureau of Economic Research, Inc.
  21. James H. Stock & Motohiro Yogo, 2002. "Testing for Weak Instruments in Linear IV Regression," NBER Technical Working Papers 0284, National Bureau of Economic Research, Inc.
  22. Marcelo J. Moreira, 2003. "A Conditional Likelihood Ratio Test for Structural Models," Econometrica, Econometric Society, vol. 71(4), pages 1027-1048, 07.
  23. Angrist, Joshua D & Krueger, Alan B, 1995. "Split-Sample Instrumental Variables Estimates of the Return to Schooling," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(2), pages 225-35, April.
  24. Hahn, Jinyong & Kuersteiner, Guido, 2002. "Discontinuities of weak instrument limiting distributions," Economics Letters, Elsevier, vol. 75(3), pages 325-331, May.
  25. Jiahui Wang & Eric Zivot, 1998. "Inference on Structural Parameters in Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 66(6), pages 1389-1404, November.
  26. Jinyong Hahn & Jerry Hausman & Guido Kuersteiner, 2004. "Estimation with weak instruments: Accuracy of higher-order bias and MSE approximations," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 272-306, 06.
  27. Buse, A, 1992. "The Bias of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 60(1), pages 173-80, January.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:137:y:2007:i:2:p:515-555. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.