IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v224y2021i1p181-197.html
   My bibliography  Save this article

Simple estimators and inference for higher-order stochastic volatility models

Author

Listed:
  • Ahsan, Md. Nazmul
  • Dufour, Jean-Marie

Abstract

We study the problem of estimating higher-order stochastic volatility [SV(p)] models. Due to the difficulty of evaluating the likelihood function, this remains a challenging problem, even in the relatively simple SV(1) case. We propose simple moment-based winsorized ARMA-type estimators, which are computationally inexpensive and remarkably accurate. The proposed estimators do not require choosing a sampling algorithm, initial parameter values, or an auxiliary model. We show that a Durbin–Levinson-type updating algorithm can be applied to recursively estimate models of increasing order p. The asymptotic distribution of the estimators is established. Due to their computational simplicity, the proposed estimators allow one to perform finite-sample Monte Carlo tests. Simulation results show that the proposed estimators have lower bias and mean squared error than all alternative estimators (including Bayes-type estimators). The proposed estimators are applied to S&P 500 daily returns (1928–2016). We find that an SV(3) model is preferable to an SV(1) model.

Suggested Citation

  • Ahsan, Md. Nazmul & Dufour, Jean-Marie, 2021. "Simple estimators and inference for higher-order stochastic volatility models," Journal of Econometrics, Elsevier, vol. 224(1), pages 181-197.
  • Handle: RePEc:eee:econom:v:224:y:2021:i:1:p:181-197
    DOI: 10.1016/j.jeconom.2021.03.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407621001007
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2021.03.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nour Meddahi, 2003. "ARMA representation of integrated and realized variances," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 335-356, December.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Bossaerts, P. & Ghysels, E. & Gourieroux, C., 1996. "Arbitrage-Based Pricing when Volatility is Stochastic," Cahiers de recherche 9615, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    4. Gourieroux,Christian & Monfort,Alain, 1995. "Statistics and Econometric Models," Cambridge Books, Cambridge University Press, number 9780521471626, October.
    5. Andersen, Torben G & Sorensen, Bent E, 1996. "GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 328-352, July.
    6. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    7. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    8. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 631-653.
    9. Danielsson, Jon, 1994. "Stochastic volatility in asset prices estimation with simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 375-400.
    10. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
    11. Melino, Angelo & Turnbull, Stuart M., 1990. "Pricing foreign currency options with stochastic volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 239-265.
    12. Hafner, Christian M. & Linton, Oliver, 2017. "An Almost Closed Form Estimator For The Egarch Model," Econometric Theory, Cambridge University Press, vol. 33(4), pages 1013-1038, August.
    13. Joshua C. C. Chan, 2017. "The Stochastic Volatility in Mean Model With Time-Varying Parameters: An Application to Inflation Modeling," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 17-28, January.
    14. Dufour, Jean-Marie, 2006. "Monte Carlo tests with nuisance parameters: A general approach to finite-sample inference and nonstandard asymptotics," Journal of Econometrics, Elsevier, vol. 133(2), pages 443-477, August.
    15. Chao, John & Swanson, Norman R., 2007. "Alternative approximations of the bias and MSE of the IV estimator under weak identification with an application to bias correction," Journal of Econometrics, Elsevier, vol. 137(2), pages 515-555, April.
    16. Dufour, Jean-Marie & Valéry, Pascale, 2009. "Exact and asymptotic tests for possibly non-regular hypotheses on stochastic volatility models," Journal of Econometrics, Elsevier, vol. 150(2), pages 193-206, June.
    17. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(2), pages 247-264.
    18. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    19. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(3), pages 361-393.
    20. Md. Nazmul Ahsan & Jean-Marie Dufour, 2019. "A Simple Efficient Moment-based Estimator for the Stochastic Volatility Model," Advances in Econometrics, in: Topics in Identification, Limited Dependent Variables, Partial Observability, Experimentation, and Flexible Modeling: Part A, volume 40, pages 157-201, Emerald Group Publishing Limited.
    21. Chan, Joshua C.C. & Grant, Angelia L., 2016. "Modeling energy price dynamics: GARCH versus stochastic volatility," Energy Economics, Elsevier, vol. 54(C), pages 182-189.
    22. Jean-Francois Richard, 2007. "Efficient High-Dimensional Importance Sampling," Working Paper 321, Department of Economics, University of Pittsburgh, revised Jan 2007.
    23. Fabienne Comte & Eric Renault, 1998. "Long memory in continuous‐time stochastic volatility models," Mathematical Finance, Wiley Blackwell, vol. 8(4), pages 291-323, October.
    24. Durham, Garland B., 2006. "Monte Carlo methods for estimating, smoothing, and filtering one- and two-factor stochastic volatility models," Journal of Econometrics, Elsevier, vol. 133(1), pages 273-305, July.
    25. Buse, A, 1992. "The Bias of Instrumental Variable Estimators," Econometrica, Econometric Society, vol. 60(1), pages 173-180, January.
    26. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comments: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 413-417, October.
    27. Gallant, A. Ronald & Hsieh, David & Tauchen, George, 1997. "Estimation of stochastic volatility models with diagnostics," Journal of Econometrics, Elsevier, vol. 81(1), pages 159-192, November.
    28. Kristensen, Dennis & Linton, Oliver, 2006. "A Closed-Form Estimator For The Garch(1,1) Model," Econometric Theory, Cambridge University Press, vol. 22(2), pages 323-337, April.
    29. Christian Francq & Jean‐Michel Zakoïan, 2006. "Linear‐representation Based Estimation of Stochastic Volatility Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(4), pages 785-806, December.
    30. Chiara Monfardini, 1998. "Estimating stochastic volatility models through indirect inference," Econometrics Journal, Royal Economic Society, vol. 1(Conferenc), pages 113-128.
    31. Richard, Jean-Francois & Zhang, Wei, 2007. "Efficient high-dimensional importance sampling," Journal of Econometrics, Elsevier, vol. 141(2), pages 1385-1411, December.
    32. Sandmann, Gleb & Koopman, Siem Jan, 1998. "Estimation of stochastic volatility models via Monte Carlo maximum likelihood," Journal of Econometrics, Elsevier, vol. 87(2), pages 271-301, September.
    33. Asai, Manabu, 2008. "Autoregressive stochastic volatility models with heavy-tailed distributions: A comparison with multifactor volatility models," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 332-341, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsyplakov, Alexander, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models," MPRA Paper 25511, University Library of Munich, Germany.
    2. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
    3. Juan Hoyo & Guillermo Llorente & Carlos Rivero, 2020. "A Testing Procedure for Constant Parameters in Stochastic Volatility Models," Computational Economics, Springer;Society for Computational Economics, vol. 56(1), pages 163-186, June.
    4. Alexander Tsyplakov, 2010. "Revealing the arcane: an introduction to the art of stochastic volatility models (in Russian)," Quantile, Quantile, issue 8, pages 69-122, July.
    5. PREMINGER, Arie & HAFNER, Christian, 2006. "Deciding between GARCH and stochastic volatility via strong decision rules," LIDAM Discussion Papers CORE 2006042, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Font, Begoña, 1998. "Modelización de series temporales financieras. Una recopilación," DES - Documentos de Trabajo. Estadística y Econometría. DS 3664, Universidad Carlos III de Madrid. Departamento de Estadística.
    7. repec:bgu:wpaper:0603 is not listed on IDEAS
    8. Pascale VALERY (HEC-Montreal) & Jean-Marie Dufour (University of Montreal), 2004. "A simple estimation method and finite-sample inference for a stochastic volatility model," Econometric Society 2004 North American Summer Meetings 153, Econometric Society.
    9. Antonis Demos, 2023. "Estimation of Asymmetric Stochastic Volatility in Mean Models," DEOS Working Papers 2309, Athens University of Economics and Business.
    10. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2005. "Volatility Forecasting," PIER Working Paper Archive 05-011, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
    11. Andersen, Torben G. & Bollerslev, Tim & Christoffersen, Peter F. & Diebold, Francis X., 2006. "Volatility and Correlation Forecasting," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 15, pages 777-878, Elsevier.
    12. N. Balakrishna & Bovas Abraham & Ranjini Sivakumar, 2006. "Gamma stochastic volatility models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(3), pages 153-171.
    13. Vo, Minh, 2011. "Oil and stock market volatility: A multivariate stochastic volatility perspective," Energy Economics, Elsevier, vol. 33(5), pages 956-965, September.
    14. G. Dhaene, 2004. "Indirect Inference for Stochastic Volatility Models via the Log-Squared Observations," Review of Business and Economic Literature, KU Leuven, Faculty of Economics and Business (FEB), Review of Business and Economic Literature, vol. 0(3), pages 421-440.
    15. Ding, Liang & Vo, Minh, 2012. "Exchange rates and oil prices: A multivariate stochastic volatility analysis," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(1), pages 15-37.
    16. Liesenfeld, Roman & Richard, Jean-Francois, 2003. "Univariate and multivariate stochastic volatility models: estimation and diagnostics," Journal of Empirical Finance, Elsevier, vol. 10(4), pages 505-531, September.
    17. Hans J. Skaug & Jun Yu, 2007. "Automated Likelihood Based Inference for Stochastic Volatility Models," Working Papers CoFie-01-2007, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
    18. Roman Liesenfeld & Robert C. Jung, 2000. "Stochastic volatility models: conditional normality versus heavy-tailed distributions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(2), pages 137-160.
    19. Vo, Minh T., 2009. "Regime-switching stochastic volatility: Evidence from the crude oil market," Energy Economics, Elsevier, vol. 31(5), pages 779-788, September.
    20. Andersen, Torben G. & Chung, Hyung-Jin & Sorensen, Bent E., 1999. "Efficient method of moments estimation of a stochastic volatility model: A Monte Carlo study," Journal of Econometrics, Elsevier, vol. 91(1), pages 61-87, July.
    21. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).

    More about this item

    Keywords

    Generalized method of moments; Markov Chain Monte Carlo; Monte Carlo tests; Stochastic volatility; Asymptotic distribution; Stock returns; Higher-order process;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:224:y:2021:i:1:p:181-197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.