IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Arbitrage-Based Pricing When Volatility is Stochastic

  • Bossaerts, Peter
  • Ghysels, Eric
  • Gourieroux, Christian

One of the early examples of stochastic volatility models is Clark [1973]. He suggested that asset price movements should be tied to the rate at which transactions occur. To accomplish this, he made a distinction between transaction time and calendar time. This framework has hitherto been relatively unexploited to study derivative security pricing. This paper studies the implications of absence of arbitrage in economies where: (i) trade takes place in transaction time, (ii) there is a single state variable whose transaction-time price path is binomial, (iii) there are risk-free bonds with calendar-time maturities, and (iv) the relation between transaction time and calendar time is stochastic. The state variable could be interpreted in various ways. For example, it could be the price of a share of stock, as in Black and Scholes [1973], or a factor that summarizes changes in the investment opportunity set, as in Cox, Ingersoll and Ross [1985], or one that drives changes in the term structure of interest rates (Ho and Lee [1986], Heath, Jarrow and Morton [1992]). Property (iv) generally introduces stochastic volatility in the process of the state variable when recorded in calendar time. The paper investigates the pricing of derivative securities with calendar-time maturity. The restrictions obtained in Merton (1973) using simple buy-and-hold arbitrage portfolio arguments do not necessarily hold. Conditions are derived for all derivatives to be priced by dynamic arbitrage, i.e., for market completeness in the sense of Harrison and Pliska [1981]. A particular class of stationary economies where markets are indeed complete is characterized. Nous étudions la problématique de détermination de prix d'options lorsque la volatilité est stochastique. Normalement, la présence d'une volatilité stochastique entraîne une incomplétude des marchés. Nous proposons une approche par arbitrage, malgré cette apparente incomplétude. Elle consiste à exploiter une modélisation de la volatili

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by California Institute of Technology, Division of the Humanities and Social Sciences in its series Working Papers with number 977.

in new window

Date of creation: Jul 1996
Date of revision:
Publication status: Published:
Handle: RePEc:clt:sswopa:977
Contact details of provider: Postal:
Working Paper Assistant, Division of the Humanities and Social Sciences, 228-77, Caltech, Pasadena CA 91125

Phone: 626 395-4065
Fax: 626 405-9841
Web page:

Order Information: Postal: Working Paper Assistant, Division of the Humanities and Social Sciences, 228-77, Caltech, Pasadena CA 91125

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Ghysels, E. & Harvey, A. & Renault, E., 1996. "Stochastic Volatility," Cahiers de recherche 9613, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  2. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
  3. Kamara, Avraham & Miller, Thomas W., 1995. "Daily and Intradaily Tests of European Put-Call Parity," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 30(04), pages 519-539, December.
  4. Heath, David & Jarrow, Robert & Morton, Andrew, 1992. "Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent Claims Valuation," Econometrica, Econometric Society, vol. 60(1), pages 77-105, January.
  5. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-55, January.
  6. Eric Ghysels & Joanna Jasiak, 1995. "Stochastic Volatility and Time Deformation: An Application to Trading Volume and Leverage Effects," CIRANO Working Papers 95s-31, CIRANO.
  7. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
  8. Engle, Robert F. & Russell, Jeffrey R., 1997. "Forecasting the frequency of changes in quoted foreign exchange prices with the autoregressive conditional duration model," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 187-212, June.
  9. Olivier Scaillet & Boris Leblanc, 1998. "Path dependent options on yields in the affine term structure model," Finance and Stochastics, Springer, vol. 2(4), pages 349-367.
  10. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "An Intertemporal General Equilibrium Model of Asset Prices," Econometrica, Econometric Society, vol. 53(2), pages 363-84, March.
  11. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
  12. Ho, Thomas S Y & Lee, Sang-bin, 1986. " Term Structure Movements and Pricing Interest Rate Contingent Claims," Journal of Finance, American Finance Association, vol. 41(5), pages 1011-29, December.
  13. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
  14. Robert Jarrow & Dilip Madan, 1995. "Option Pricing Using The Term Structure Of Interest Rates To Hedge Systematic Discontinuities In Asset Returns," Mathematical Finance, Wiley Blackwell, vol. 5(4), pages 311-336.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:clt:sswopa:977. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Victoria Mason)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.