IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Stochastic Volatility and Time Deformation: An Application to Trading Volume and Leverage Effects

  • Eric Ghysels
  • Joanna Jasiak

In this paper, we study stochastic volatility models with time deformation. Such processes relate to early work by Mandelbrot and Taylor (1967), Clark (1973), Tauchen and Pitts (1983), among others. In our setup, the latent process of stochastic volatility evolves in a operational time which differs from calendar time. The time deformation can be determined by past volume of trade, past price changes, possibly with an asymmetric leverage effect, and other variables setting the pace of information arrival. The econometric specification exploits the state-space approach for stochastic volatility models proposed by Harvey, Ruiz and Shephard (1994) as well as matching moment estimation procedures using SNP densities of stock returns and trading volume estimated by Gallant, Rossi and Tauchen (1992). Daily data on the price changes and volume of trade of the S&P 500 over a 1950-1987 sample are investigated. Supporting evidence for a time deformation representation is found and its impact on the behaviour of price series and volume is analyzed. We find that increases in volume accelerate operational time, resulting in volatility being less persistent and subject to shocks with a higher innovation variance. Downward price movements have similar effects while upward price movements increase persistence in volatility and decrease the dispersion of shocks by slowing down the operational time clock. We present the basic model as well as several extensions, in particular, we formulate and estimate a bivariate return-volume stochastic volatility model with time deformation. The latter is examined through bivariate impulse response profiles following the example of Gallant, Rossi and Tauchen (1993). Nous proposons un modèle de volatilité stochastique avec déformation du temps suite aux travaux par Mandelbrot et Taylor (1967), Clark (1973), Tauchen et Pitts (1983) et autres. La volatilité est supposée être un processus qui évolue dans un temps déformé déterminé par l'arrivée de l'information sur le marché d'actifs financiers. Des séries telles que le volume de transaction et le rendement passé sont utilisées pour identifier la correspondance entre le temps calendrier et opérationnel. Le modèle est estimé soit par la procédure de pseudo maximum de vraisemblance comme proposé par Harvey et al. (1994), soit par des méthodes d'inférence indirecte utilisant la densité SNP de Gallant, Rossi et Tauchen (1992). Dans la partie empirique, nous utilisons des données journalières de la bourse de New York. Un modèle univarié de volatilité stochastique ainsi qu'un modèle bivarié de volume et rendements avec déformation du temps sont analysés.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.cirano.qc.ca/files/publications/95s-31.pdf
Download Restriction: no

Paper provided by CIRANO in its series CIRANO Working Papers with number 95s-31.

as
in new window

Length: 47 pages
Date of creation: 01 Jun 1995
Date of revision:
Handle: RePEc:cir:cirwor:95s-31
Contact details of provider: Postal: 1130 rue Sherbrooke Ouest, suite 1400, Montréal, Quéc, H3A 2M8
Phone: (514) 985-4000
Fax: (514) 985-4039
Web page: http://www.cirano.qc.ca/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Lo, Andrew W., 1988. "Maximum Likelihood Estimation of Generalized Itô Processes with Discretely Sampled Data," Econometric Theory, Cambridge University Press, vol. 4(02), pages 231-247, August.
  2. Gallant, A.R. & Tauchen, G., 1988. "Seminonparametric Estimation Of Conditionally Constrained Heterogeneous Processes: Asset Pricing Applications," Papers 88-59, Chicago - Graduate School of Business.
  3. Gourieroux, C. & Monfort, A. & Renault, E., 1992. "Indirect Inference," Papers 92.279, Toulouse - GREMAQ.
  4. Lars Peter Hansen & Thomas J. Sargent, 1990. "Recursive Linear Models of Dynamic Economies," NBER Working Papers 3479, National Bureau of Economic Research, Inc.
  5. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comments: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 413-17, October.
  6. Easley, David & O'Hara, Maureen, 1992. " Time and the Process of Security Price Adjustment," Journal of Finance, American Finance Association, vol. 47(2), pages 576-605, June.
  7. Chesney, Marc & Scott, Louis, 1989. "Pricing European Currency Options: A Comparison of the Modified Black-Scholes Model and a Random Variance Model," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 24(03), pages 267-284, September.
  8. Gallant, A Ronald & Rossi, Peter E & Tauchen, George, 1993. "Nonlinear Dynamic Structures," Econometrica, Econometric Society, vol. 61(4), pages 871-907, July.
  9. Merton, Robert C, 1973. "An Intertemporal Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 41(5), pages 867-87, September.
  10. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-55, January.
  11. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
  12. Johnson, Herb & Shanno, David, 1987. "Option Pricing when the Variance Is Changing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(02), pages 143-151, June.
  13. Karpoff, Jonathan M., 1987. "The Relation between Price Changes and Trading Volume: A Survey," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(01), pages 109-126, March.
  14. Jerry A. Hausman & Andrew W. Lo & Craig A. MacKinlay, . "An Ordered Probit Analysis of Transaction Stock Prices (Reprint 029)," Rodney L. White Center for Financial Research Working Papers 26-91, Wharton School Rodney L. White Center for Financial Research.
  15. Adrian R. Pagan & G. William Schwert, 1990. "Alternative Models For Conditional Stock Volatility," NBER Working Papers 2955, National Bureau of Economic Research, Inc.
  16. Hausman, Jerry A. & Lo, Andrew W. & MacKinlay, A. Craig, 1992. "An ordered probit analysis of transaction stock prices," Journal of Financial Economics, Elsevier, vol. 31(3), pages 319-379, June.
  17. Christie, Andrew A., 1982. "The stochastic behavior of common stock variances : Value, leverage and interest rate effects," Journal of Financial Economics, Elsevier, vol. 10(4), pages 407-432, December.
  18. Harris, Lawrence, 1987. "Transaction Data Tests of the Mixture of Distributions Hypothesis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(02), pages 127-141, June.
  19. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  20. Zadrozny, Peter, 1988. "Gaussian Likelihood of Continuous-Time ARMAX Models When Data Are Stocks and Flows at Different Frequencies," Econometric Theory, Cambridge University Press, vol. 4(01), pages 108-124, April.
  21. Dilip B. Madan & Frank Milne, 1991. "Option Pricing With V. G. Martingale Components," Mathematical Finance, Wiley Blackwell, vol. 1(4), pages 39-55.
  22. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
  23. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
  24. Lamoureux, Christopher G & Lastrapes, William D, 1990. " Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects," Journal of Finance, American Finance Association, vol. 45(1), pages 221-29, March.
  25. Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
  26. Foster, F Douglas & Viswanathan, S, 1993. "The Effect of Public Information and Competition on Trading Volume and Price Volatility," Review of Financial Studies, Society for Financial Studies, vol. 6(1), pages 23-56.
  27. Melino, Angelo & Turnbull, Stuart M., 1990. "Pricing foreign currency options with stochastic volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 239-265.
  28. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-43.
  29. Dacorogna, Michael M. & Muller, Ulrich A. & Nagler, Robert J. & Olsen, Richard B. & Pictet, Olivier V., 1993. "A geographical model for the daily and weekly seasonal volatility in the foreign exchange market," Journal of International Money and Finance, Elsevier, vol. 12(4), pages 413-438, August.
  30. Scott, Louis O., 1987. "Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(04), pages 419-438, December.
  31. Tauchen, George E & Pitts, Mark, 1983. "The Price Variability-Volume Relationship on Speculative Markets," Econometrica, Econometric Society, vol. 51(2), pages 485-505, March.
  32. French, Kenneth R., 1980. "Stock returns and the weekend effect," Journal of Financial Economics, Elsevier, vol. 8(1), pages 55-69, March.
  33. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
  34. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-52.
  35. Bollerslev, T. & Ghysels, E., 1994. "Periodic Autoregressive Conditional Heteroskedasticity," Cahiers de recherche 9408, Universite de Montreal, Departement de sciences economiques.
  36. Hélyette Geman & Marc Yor, 1993. "Bessel Processes, Asian Options, And Perpetuities," Mathematical Finance, Wiley Blackwell, vol. 3(4), pages 349-375.
  37. Schwert, G William, 1990. "Indexes of U.S. Stock Prices from 1802 to 1987," The Journal of Business, University of Chicago Press, vol. 63(3), pages 399-426, July.
  38. Wiggins, James B., 1987. "Option values under stochastic volatility: Theory and empirical estimates," Journal of Financial Economics, Elsevier, vol. 19(2), pages 351-372, December.
  39. Gallant, A Ronald & Rossi, Peter E & Tauchen, George, 1992. "Stock Prices and Volume," Review of Financial Studies, Society for Financial Studies, vol. 5(2), pages 199-242.
  40. French, Kenneth R. & Roll, Richard, 1986. "Stock return variances : The arrival of information and the reaction of traders," Journal of Financial Economics, Elsevier, vol. 17(1), pages 5-26, September.
  41. Harvey, Andrew & Ruiz, Esther & Shephard, Neil, 1994. "Multivariate Stochastic Variance Models," Review of Economic Studies, Wiley Blackwell, vol. 61(2), pages 247-64, April.
  42. Huffman, Gregory W, 1987. "A Dynamic Equilibrium Model of Asset Prices and Transaction Volume," Journal of Political Economy, University of Chicago Press, vol. 95(1), pages 138-59, February.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:95s-31. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.