IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Asymmetric Smiles, Leverage Effects and Structural Parameters

  • René Garcia
  • Richard Luger
  • Éric Renault

In this paper, we characterize the asymmetries of the smile through multiple leverage effects in a stochastic dynamic asset pricing framework. The dependence between price movements and future volatility is introduced through a set of latent state variables. These latent variables can capture not only the volatility risk and the interest rate risk which potentially affect option prices, but also any kind of correlation risk and jump risk. The standard financial leverage effect is produced by a cross-correlation effect between the state variables which enter into the stochastic volatility process of the stock price and the stock price process itself. However, we provide a more general framework where asymmetric implied volatility curves result from any source of instantaneous correlation between the state variables and, either the return on the stock or the stochastic discount factor. In order to draw the shapes of the implied volatility curves generated by a model with latent variables, we specify an equilibrium-based stochastic discount factor with time non-separable preferences. When we calibrate this model to empirically reasonable values of the parameters, we are able to reproduce the various types of implied volatility curves inferred from option market data. Dans cet article, nous caractérisons les asymétries observées dans les courbes de volatilités implicites par la présence d'effets de levier multiples dans un modèle dynamique stochastique d'évaluation des actifs financiers. La dépendance entre les mouvements de prix et la volatilité future est introduite par l'intermédiaire d'un ensemble de variables d'état latentes. Ces variables d'état sont susceptibles de capter non seulement le risque de volatilité et le risque de taux d'intérêt qui peuvent influer sur les prix d'options,0501s encore les risques de corrélation et de saut. L'effet de levier financier traditionnel est produit quant à lui par une corrélation instantanée entre les variables d'état qui entrent dans le processus de volatilité stochastique du prix de l'action et le processus du prix de l'action proprement dit. Nous disposons toutefois d'un cadre plus général dans lequel l'asymétrie des courbes de volatilités implicites résulte de toute corrélation instantanée entre les variables d'état et soit le rendement de l'action soit le facteur d'actualisation stochastique. Dans le but de tracer les formes des courbes de volatilités implicites générées par un modèle avec variables latentes, nous spécifions un facteur d'actualisation stochastique fondé sur un modèle d'équilibre avec préférences non séparables dans le temps. Lorsque nous calibrons ce modèle avec des valeurs raisonnables des paramètres, nous reproduisons les diverses formes de courbes de volatilités implicites qui sont produites à partir des données de prix d'options observées sur le marché.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.cirano.qc.ca/files/publications/2001s-01.pdf
Download Restriction: no

Paper provided by CIRANO in its series CIRANO Working Papers with number 2001s-01.

as
in new window

Length: 55 pages
Date of creation: 01 Jan 2001
Date of revision:
Handle: RePEc:cir:cirwor:2001s-01
Contact details of provider: Postal: 2020 rue University, 25e étage, Montréal, Quéc, H3A 2A5
Phone: (514) 985-4000
Fax: (514) 985-4039
Web page: http://www.cirano.qc.ca/Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Hentschel, Ludger & Campbell, John, 1992. "No News is Good News: An Asymmetric Model of Changing Volatility in Stock Returns," Scholarly Articles 3220232, Harvard University Department of Economics.
  2. GARCIA, René & RENAULT, Éric, 2000. "Latent Variable Models for Stochastic Discount Factors," Cahiers de recherche 2000-01, Universite de Montreal, Departement de sciences economiques.
  3. Charles Quanwei Cao & Gurdip S. Bakshi & Zhiwu Chen, 1997. "Empirical Performance of Alternative Option Pricing Models," Yale School of Management Working Papers ysm65, Yale School of Management.
  4. E. Platen & M. Schweizer, 1997. "On Feedback Effects from Hedging Derivatives," SFB 373 Discussion Papers 1997,83, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  5. Chernov, Mikhail & Ghysels, Eric, 2000. "A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation," Journal of Financial Economics, Elsevier, vol. 56(3), pages 407-458, June.
  6. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  7. Bonomo, M. & Garcia, R., 1991. "Consumption and Equilibrium Asset Pricing: an Empirical Assessment," Cahiers de recherche 9126, Universite de Montreal, Departement de sciences economiques.
  8. Longstaff, Francis A, 1995. "Option Pricing and the Martingale Restriction," Review of Financial Studies, Society for Financial Studies, vol. 8(4), pages 1091-1124.
  9. Hansen, Lars Peter & Richard, Scott F, 1987. "The Role of Conditioning Information in Deducing Testable," Econometrica, Econometric Society, vol. 55(3), pages 587-613, May.
  10. René Garcia & Eric Renault, 1998. "Risk Aversion, Intertemporal Substitution, and Option Pricing," Working Papers 98-10, Centre de Recherche en Economie et Statistique.
  11. GARCIA,René & LUGER, Richard & RENAULT, Éric, 2001. "Empirical Assessment of an Intertemporal Option Pricing Model with Latent variables," Cahiers de recherche 2001-10, Universite de Montreal, Departement de sciences economiques.
  12. Yacine Aït-Sahalia & Andrew W. Lo, 1998. "Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices," Journal of Finance, American Finance Association, vol. 53(2), pages 499-547, 04.
  13. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
  14. John Y. Campbell & John H. Cochrane, 1994. "By force of habit: a consumption-based explanation of aggregate stock market behavior," Working Papers 94-17, Federal Reserve Bank of Philadelphia.
  15. Jorion, Philippe, 1995. " Predicting Volatility in the Foreign Exchange Market," Journal of Finance, American Finance Association, vol. 50(2), pages 507-28, June.
  16. David S. Bates, 1997. "Post-'87 Crash Fears in S&P 500 Futures Options," NBER Working Papers 5894, National Bureau of Economic Research, Inc.
  17. Alexander David & Pietro Varonesi, 1999. "Option prices with uncertain fundamentals theory and evidence on the dynamics of implied volatilities," Finance and Economics Discussion Series 1999-47, Board of Governors of the Federal Reserve System (U.S.).
  18. Lucas, Robert E, Jr, 1978. "Asset Prices in an Exchange Economy," Econometrica, Econometric Society, vol. 46(6), pages 1429-45, November.
  19. Amin, Kaushik I & Ng, Victor K, 1993. " Option Valuation with Systematic Stochastic Volatility," Journal of Finance, American Finance Association, vol. 48(3), pages 881-910, July.
  20. Jin-Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32.
  21. S.G. Cecchetti & P. Lam & N.C. Mark, 2010. "The equity premium and the risk-free rate: matching the moments," Levine's Working Paper Archive 1396, David K. Levine.
  22. Epstein, Larry G & Zin, Stanley E, 1991. "Substitution, Risk Aversion, and the Temporal Behavior of Consumption and Asset Returns: An Empirical Analysis," Journal of Political Economy, University of Chicago Press, vol. 99(2), pages 263-86, April.
  23. Kreps, David M & Porteus, Evan L, 1978. "Temporal Resolution of Uncertainty and Dynamic Choice Theory," Econometrica, Econometric Society, vol. 46(1), pages 185-200, January.
  24. Gabriele Fiorentini & Enrique Sentana Iváñez, 1997. "Conditional means of time series processes and time series processes for conditional means," Working Papers. Serie AD 1997-17, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
  25. GHYSELS, Eric & HARVEY, Andrew & RENAULT, Eric, 1995. "Stochastic Volatility," CORE Discussion Papers 1995069, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  26. Das, Sanjiv Ranjan & Sundaram, Rangarajan K., 1999. "Of Smiles and Smirks: A Term Structure Perspective," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(02), pages 211-239, June.
  27. Brennan, M J, 1979. "The Pricing of Contingent Claims in Discrete Time Models," Journal of Finance, American Finance Association, vol. 34(1), pages 53-68, March.
  28. Bernard Dumas & Jeff Fleming & Robert E. Whaley, 1998. "Implied Volatility Functions: Empirical Tests," Journal of Finance, American Finance Association, vol. 53(6), pages 2059-2106, December.
  29. John Y. Campbell & John Cochrane, 1999. "Force of Habit: A Consumption-Based Explanation of Aggregate Stock Market Behavior," Journal of Political Economy, University of Chicago Press, vol. 107(2), pages 205-251, April.
  30. A. Ronald Gallant & Chien-Te Hsu & George Tauchen, 1999. "Using Daily Range Data To Calibrate Volatility Diffusions And Extract The Forward Integrated Variance," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 617-631, November.
  31. Charles Quanwei Cao & Gurdip S. Bakshi & Zhiwu Chen, 1998. "Pricing and Hedging Long-Term Options," Yale School of Management Working Papers ysm90, Yale School of Management.
  32. Charles Quanwei Cao & Gurdip S. Bakshi & Zhiwu Chen, 1999. "Do Call Prices and the Underlying Stock Always Move in the Same Direction?," Yale School of Management Working Papers ysm125, Yale School of Management.
  33. Jan Kallsen & Murad S. Taqqu, 1998. "Option Pricing in ARCH-type Models," Mathematical Finance, Wiley Blackwell, vol. 8(1), pages 13-26.
  34. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-51, October.
  35. repec:fth:inseep:9810 is not listed on IDEAS
  36. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
  37. Garcia, R. & Bonomo, M., 1993. "Disappointment Aversion as a Solution to the Equity Premium and the Risk- Free Rate Puzzles," Cahiers de recherche 9334, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  38. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
  39. Naik, Vasanttilak & Lee, Moon, 1990. "General Equilibrium Pricing of Options on the Market Portfolio with Discontinuous Returns," Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 493-521.
  40. Bailey, Warren & Stulz, René M., 1989. "The Pricing of Stock Index Options in a General Equilibrium Model," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 24(01), pages 1-12, March.
  41. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
  42. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-55, January.
  43. Rubinstein, Mark, 1994. " Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
  44. Sims, Christopher A, 1972. "Money, Income, and Causality," American Economic Review, American Economic Association, vol. 62(4), pages 540-52, September.
  45. Epstein, Larry G & Zin, Stanley E, 1989. "Substitution, Risk Aversion, and the Temporal Behavior of Consumption and Asset Returns: A Theoretical Framework," Econometrica, Econometric Society, vol. 57(4), pages 937-69, July.
  46. Kyriakos Chourdakis & Elias Tzavalis, 2000. "Option Pricing under Discrete Shifts in Stock Returns," Working Papers 426, Queen Mary University of London, School of Economics and Finance.
  47. Constantinides, George M, 1992. "A Theory of the Nominal Term Structure of Interest Rates," Review of Financial Studies, Society for Financial Studies, vol. 5(4), pages 531-52.
  48. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-43.
  49. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-38, July.
  50. Grossman, Sanford J & Zhou, Zhongquan, 1996. " Equilibrium Analysis of Portfolio Insurance," Journal of Finance, American Finance Association, vol. 51(4), pages 1379-1403, September.
  51. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
  52. Kaushik I. Amin & Robert A. Jarrow, 1992. "Pricing Options On Risky Assets In A Stochastic Interest Rate Economy," Mathematical Finance, Wiley Blackwell, vol. 2(4), pages 217-237.
  53. Turnbull, Stuart M & Milne, Frank, 1991. "A Simple Approach to Interest-Rate Option Pricing," Review of Financial Studies, Society for Financial Studies, vol. 4(1), pages 87-120.
  54. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-84, March.
  55. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
  56. René Garcia & Richard Luger & Eric Renault, 2000. "Empirical Assessment of an Intertemporal Option Pricing Model with Latent Variables," Working Papers 2000-56, Centre de Recherche en Economie et Statistique.
  57. Eric Renault & Nizar Touzi, 1996. "Option Hedging And Implied Volatilities In A Stochastic Volatility Model," Mathematical Finance, Wiley Blackwell, vol. 6(3), pages 279-302.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2001s-01. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.