IDEAS home Printed from https://ideas.repec.org/p/cir/cirwor/2001s-02.html
   My bibliography  Save this paper

Empirical Assessment of an Intertemporal Option Pricing Model with Latent Variables (Note : New version February 2002) / Empirical Assessment of an Intertemporal Option Pricing Model with Latent Variables (Note : Nouvelle version Février 2002)

Author

Listed:
  • René Garcia
  • Richard Luger
  • Éric Renault

Abstract

This paper assesses the empirical performance of an intertemporal option pricing model with latent variables which generalizes the Hull-White stochastic volatility formula. Using this generalized formula in an ad-hoc fashion to extract two implicit parameters and forecast next day S&P 500 option prices, we obtain similar pricing errors than with implied volatility alone as in the Hull-White case. When we specialize this model to an equilibrium recursive utility model, we show through simulations that option prices are more informative than stock prices about the structural parameters of the model. We also show that a simple method of moments with a panel of option prices provides good estimates of the parameters of the model. This lays the ground for an empirical assessment of this equilibrium model with S&P 500 option prices in terms of pricing errors. On évalue dans cet article la performance empirique d'un modèle dynamique d'évaluation d'options qui fournit une formule de prix fondée sur des processus latents de variables d'état. Cette formule est une généralisation de la formule dite de Hull et White (1987) qui évalue une option européenne écrite sur un actif à volatilité stochastique. On propose dans un premier temps de fonder sur cette formule une procédure empirique ad hoc permettant l'évaluation d'une option à partir du calcul de deux paramètres implicites extraits sur les prix d'options observés la veille. Appliquée à la prévision des prix d'options sur l'indice S&P 500, cette procédure offre un gain de précision significatif par rapport à la pratique usuelle de prévision des prix à travers une volatilité implicite conformément à ce que suggère la formule de Hull et White. Dans un second temps, on propose de particulariser le modèle dans un contexte d'équilibre intertemporel avec utilité récursive. On fournit alors des résultats d'expériences de Monte Carlo montrant que les statistiques de prix d'options produisent des estimateurs des paramètres structurels de l'équilibre beaucoup plus précis que les données de prix de l'actif sous-jacent. Ceci suggère en retour que les paramètres structurels devraient jouer un rôle important dans l'évaluation d'options. Cette affirmation est validée empiriquement sur les données d'options sur l'indice S&P 500 en montrant que la formule de Hull et White est dominée, en termes de prévision des prix d'options hors-échantillon par une formule dépendant explicitement de paramètres de préférence, a fortiori si ceux-ci prennent en compte de façon non contrainte à la fois l'aversion pour le risque et l'élasticité de substitution intertemporelle.

Suggested Citation

  • René Garcia & Richard Luger & Éric Renault, 2001. "Empirical Assessment of an Intertemporal Option Pricing Model with Latent Variables (Note : New version February 2002) / Empirical Assessment of an Intertemporal Option Pricing Model with Latent Varia," CIRANO Working Papers 2001s-02, CIRANO.
  • Handle: RePEc:cir:cirwor:2001s-02
    as

    Download full text from publisher

    File URL: http://www.cirano.qc.ca/files/publications/2001s-02.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Constantinides, George M, 1992. "A Theory of the Nominal Term Structure of Interest Rates," Review of Financial Studies, Society for Financial Studies, vol. 5(4), pages 531-552.
    2. Rosenberg, Joshua V. & Engle, Robert F., 2002. "Empirical pricing kernels," Journal of Financial Economics, Elsevier, vol. 64(3), pages 341-372, June.
    3. repec:cdl:ucsbec:22-98 is not listed on IDEAS
    4. Cecchetti, Stephen G & Lam, Pok-sang & Mark, Nelson C, 1990. "Mean Reversion in Equilibrium Asset Prices," American Economic Review, American Economic Association, vol. 80(3), pages 398-418, June.
    5. Turnbull, Stuart M & Milne, Frank, 1991. "A Simple Approach to Interest-Rate Option Pricing," Review of Financial Studies, Society for Financial Studies, vol. 4(1), pages 87-120.
    6. Garcia, R. & Bonomo, M., 1993. "Disappointment Aversion as a Solution to the Equity Premium and the Risk- Free Rate Puzzles," Cahiers de recherche 9334, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
    7. Jackwerth, Jens Carsten, 2000. "Recovering Risk Aversion from Option Prices and Realized Returns," Review of Financial Studies, Society for Financial Studies, vol. 13(2), pages 433-451.
    8. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters,in: Theory Of Valuation, chapter 8, pages 229-288 World Scientific Publishing Co. Pte. Ltd..
    9. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    10. Mehra, Rajnish & Sah, Raaj, 2002. "Mood fluctuations, projection bias, and volatility of equity prices," Journal of Economic Dynamics and Control, Elsevier, vol. 26(5), pages 869-887, May.
    11. Kreps, David M & Porteus, Evan L, 1978. "Temporal Resolution of Uncertainty and Dynamic Choice Theory," Econometrica, Econometric Society, vol. 46(1), pages 185-200, January.
    12. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    13. Heston, Steven L & Nandi, Saikat, 2000. "A Closed-Form GARCH Option Valuation Model," Review of Financial Studies, Society for Financial Studies, vol. 13(3), pages 585-625.
    14. Bonomo, Marco & Garcia, Rene, 1996. "Consumption and equilibrium asset pricing: An empirical assessment," Journal of Empirical Finance, Elsevier, vol. 3(3), pages 239-265, September.
    15. Weil, Philippe, 1989. "The equity premium puzzle and the risk-free rate puzzle," Journal of Monetary Economics, Elsevier, vol. 24(3), pages 401-421, November.
    16. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    17. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    18. Peter Christoffersen & Kris Jacobs, 2001. "The Importance of the Loss Function in Option Pricing," CIRANO Working Papers 2001s-45, CIRANO.
    19. Ait-Sahalia, Yacine & Lo, Andrew W., 2000. "Nonparametric risk management and implied risk aversion," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 9-51.
    20. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    21. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    22. Chernov, Mikhail & Ghysels, Eric, 2000. "A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation," Journal of Financial Economics, Elsevier, vol. 56(3), pages 407-458, June.
    23. Gurdip Bakshi & Nikunj Kapadia & Dilip Madan, 2003. "Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options," Review of Financial Studies, Society for Financial Studies, vol. 16(1), pages 101-143.
    24. Pan, Jun, 2002. "The jump-risk premia implicit in options: evidence from an integrated time-series study," Journal of Financial Economics, Elsevier, vol. 63(1), pages 3-50, January.
    25. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    26. Kaushik I. Amin & Robert A. Jarrow, 2008. "Pricing Options On Risky Assets In A Stochastic Interest Rate Economy," World Scientific Book Chapters,in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 15, pages 327-347 World Scientific Publishing Co. Pte. Ltd..
    27. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. " Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    28. Lucas, Robert E, Jr, 1978. "Asset Prices in an Exchange Economy," Econometrica, Econometric Society, vol. 46(6), pages 1429-1445, November.
    29. Allan Timmerman & Massimo Guidolin, 2001. "Option prices and implied volatility dynamics under Bayesian learning," CeNDEF Workshop Papers, January 2001 P3, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    30. Jan Kallsen & Murad S. Taqqu, 1998. "Option Pricing in ARCH-type Models," Mathematical Finance, Wiley Blackwell, vol. 8(1), pages 13-26.
    31. Amin, Kaushik I & Ng, Victor K, 1993. " Option Valuation with Systematic Stochastic Volatility," Journal of Finance, American Finance Association, vol. 48(3), pages 881-910, July.
    32. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    33. Brennan, M J, 1979. "The Pricing of Contingent Claims in Discrete Time Models," Journal of Finance, American Finance Association, vol. 34(1), pages 53-68, March.
    34. Bates, David S., 2000. "Post-'87 crash fears in the S&P 500 futures option market," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 181-238.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Option pricing; stochastic discount factor; stochastic volatility; Black-Scholes implied volatility; smile effect; equilibrium option pricing; Évaluation d'options; facteur d'actualisation stochastique; volatilité stochastique; volatilité implicite de Black-Scholes; effet de sourire; modèle d'équilibre d'évaluation d'options;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • G1 - Financial Economics - - General Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2001s-02. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster). General contact details of provider: http://edirc.repec.org/data/ciranca.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.