IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Empirical Assessment of an Intertemporal Option Pricing Model with Latent Variables (Note : New version February 2002) / Empirical Assessment of an Intertemporal Option Pricing Model with Latent Variables (Note : Nouvelle version Février 2002)

  • René Garcia
  • Richard Luger
  • Éric Renault

This paper assesses the empirical performance of an intertemporal option pricing model with latent variables which generalizes the Hull-White stochastic volatility formula. Using this generalized formula in an ad-hoc fashion to extract two implicit parameters and forecast next day S&P 500 option prices, we obtain similar pricing errors than with implied volatility alone as in the Hull-White case. When we specialize this model to an equilibrium recursive utility model, we show through simulations that option prices are more informative than stock prices about the structural parameters of the model. We also show that a simple method of moments with a panel of option prices provides good estimates of the parameters of the model. This lays the ground for an empirical assessment of this equilibrium model with S&P 500 option prices in terms of pricing errors. On évalue dans cet article la performance empirique d'un modèle dynamique d'évaluation d'options qui fournit une formule de prix fondée sur des processus latents de variables d'état. Cette formule est une généralisation de la formule dite de Hull et White (1987) qui évalue une option européenne écrite sur un actif à volatilité stochastique. On propose dans un premier temps de fonder sur cette formule une procédure empirique ad hoc permettant l'évaluation d'une option à partir du calcul de deux paramètres implicites extraits sur les prix d'options observés la veille. Appliquée à la prévision des prix d'options sur l'indice S&P 500, cette procédure offre un gain de précision significatif par rapport à la pratique usuelle de prévision des prix à travers une volatilité implicite conformément à ce que suggère la formule de Hull et White. Dans un second temps, on propose de particulariser le modèle dans un contexte d'équilibre intertemporel avec utilité récursive. On fournit alors des résultats d'expériences de Monte Carlo montrant que les statistiques de prix d'options produisent des estimateurs des paramètres structurels de l'équilibre beaucoup plus précis que les données de prix de l'actif sous-jacent. Ceci suggère en retour que les paramètres structurels devraient jouer un rôle important dans l'évaluation d'options. Cette affirmation est validée empiriquement sur les données d'options sur l'indice S&P 500 en montrant que la formule de Hull et White est dominée, en termes de prévision des prix d'options hors-échantillon par une formule dépendant explicitement de paramètres de préférence, a fortiori si ceux-ci prennent en compte de façon non contrainte à la fois l'aversion pour le risque et l'élasticité de substitution intertemporelle.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.cirano.qc.ca/files/publications/2001s-02.pdf
Download Restriction: no

Paper provided by CIRANO in its series CIRANO Working Papers with number 2001s-02.

as
in new window

Length: 49 pages
Date of creation: 01 Jan 2001
Date of revision:
Handle: RePEc:cir:cirwor:2001s-02
Contact details of provider: Postal: 2020 rue University, 25e étage, Montréal, Quéc, H3A 2A5
Phone: (514) 985-4000
Fax: (514) 985-4039
Web page: http://www.cirano.qc.ca/Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Heston, Steven L & Nandi, Saikat, 2000. "A Closed-Form GARCH Option Valuation Model," Review of Financial Studies, Society for Financial Studies, vol. 13(3), pages 585-625.
  2. Amin, Kaushik I & Ng, Victor K, 1993. " Option Valuation with Systematic Stochastic Volatility," Journal of Finance, American Finance Association, vol. 48(3), pages 881-910, July.
  3. Lucas, Robert E, Jr, 1978. "Asset Prices in an Exchange Economy," Econometrica, Econometric Society, vol. 46(6), pages 1429-45, November.
  4. Philippe Weil, 1989. "The Equity Premium Puzzle and the Riskfree Rate Puzzle," NBER Working Papers 2829, National Bureau of Economic Research, Inc.
  5. Allan Timmerman & Massimo Guidolin, 2001. "Option prices and implied volatility dynamics under Bayesian learning," CeNDEF Workshop Papers, January 2001 P3, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
  6. Peter Christoffersen & Kris Jacobs, 2001. "The Importance of the Loss Function in Option Pricing," CIRANO Working Papers 2001s-45, CIRANO.
  7. Chernov, Mikhail & Ghysels, Eric, 2000. "A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation," Journal of Financial Economics, Elsevier, vol. 56(3), pages 407-458, June.
  8. Bonomo, M. & Garcia, R., 1991. "Consumption and Equilibrium Asset Pricing: an Empirical Assessment," Cahiers de recherche 9126, Universite de Montreal, Departement de sciences economiques.
  9. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-84, September.
  10. Francis X. Diebold & Robert S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
  11. Pan, Jun, 2002. "The jump-risk premia implicit in options: evidence from an integrated time-series study," Journal of Financial Economics, Elsevier, vol. 63(1), pages 3-50, January.
  12. Charles Quanwei Cao & Gurdip S. Bakshi & Zhiwu Chen, 1997. "Empirical Performance of Alternative Option Pricing Models," Yale School of Management Working Papers ysm65, Yale School of Management.
  13. Yacine Ait-Sahalia & Andrew W. Lo, 2000. "Nonparametric Risk Management and Implied Risk Aversion," NBER Working Papers 6130, National Bureau of Economic Research, Inc.
  14. Jan Kallsen & Murad S. Taqqu, 1998. "Option Pricing in ARCH-type Models," Mathematical Finance, Wiley Blackwell, vol. 8(1), pages 13-26.
  15. Garcia, R. & Luger, R. & Renault, E., 2001. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Cahiers de recherche 2001-09, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  16. Stephen G. Cecchetti & Pok-sang Lam & Nelson C. Mark, 1988. "Mean Reversion in Equilibrium Asset Prices," NBER Working Papers 2762, National Bureau of Economic Research, Inc.
  17. Jens Carsten Jackwerth, 1998. "Recovering Risk Aversion from Option Prices and Realized Returns," Finance 9803002, EconWPA.
  18. Brennan, M J, 1979. "The Pricing of Contingent Claims in Discrete Time Models," Journal of Finance, American Finance Association, vol. 34(1), pages 53-68, March.
  19. Rosenberg, Joshua V. & Engle, Robert F., 2002. "Empirical pricing kernels," Journal of Financial Economics, Elsevier, vol. 64(3), pages 341-372, June.
  20. Kreps, David M & Porteus, Evan L, 1978. "Temporal Resolution of Uncertainty and Dynamic Choice Theory," Econometrica, Econometric Society, vol. 46(1), pages 185-200, January.
  21. Constantinides, George M, 1992. "A Theory of the Nominal Term Structure of Interest Rates," Review of Financial Studies, Society for Financial Studies, vol. 5(4), pages 531-52.
  22. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-43.
  23. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
  24. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-51, October.
  25. Bates, David S., 2000. "Post-'87 crash fears in the S&P 500 futures option market," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 181-238.
  26. Garcia, R. & Bonomo, M., 1993. "Disappointment Aversion as a Solution to the Equity Premium and the Risk- Free Rate Puzzles," Cahiers de recherche 9334, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  27. Robert C. Merton, 1973. "Theory of Rational Option Pricing," Bell Journal of Economics, The RAND Corporation, vol. 4(1), pages 141-183, Spring.
  28. Gurdip Bakshi & Nikunj Kapadia & Dilip Madan, 2003. "Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options," Review of Financial Studies, Society for Financial Studies, vol. 16(1), pages 101-143.
  29. Turnbull, Stuart M & Milne, Frank, 1991. "A Simple Approach to Interest-Rate Option Pricing," Review of Financial Studies, Society for Financial Studies, vol. 4(1), pages 87-120.
  30. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-84, March.
  31. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
  32. Kaushik I. Amin & Robert A. Jarrow, 1992. "Pricing Options On Risky Assets In A Stochastic Interest Rate Economy," Mathematical Finance, Wiley Blackwell, vol. 2(4), pages 217-237.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2001s-02. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.