IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this article

Pricing Options On Risky Assets In A Stochastic Interest Rate Economy

Listed author(s):
  • Kaushik I. Amin
  • Robert A. Jarrow

This paper studies contingent claim valuation of risky assets in a stochastic interest rate economy. the model employed generalizes the approach utilized by Heath, Jarrow, and Morton (1992) by imbedding their stochastic interest rate economy into one containing an arbitrary number of additional risky assets. We derive closed form formulae for certain types of European options in this context, notably call and put options on risky assets, forward contracts, and futures contracts. We also value American contingent claims whose payoffs are permitted to be general functions of both the term structure and asset prices generalizing Bensoussan (1984) and Karatzas (1988) in this regard. Here, we provide an example where an American call's value is well defined, yet there does not exist an optimal trading strategy which attains this value. Furthermore, this example is not pathological as it is a generalization of Roll's (1977) formula for a call option on a stock that pays discrete dividends. Copyright 1992 Blackwell Publishers.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: link to full text
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Wiley Blackwell in its journal Mathematical Finance.

Volume (Year): 2 (1992)
Issue (Month): 4 ()
Pages: 217-237

in new window

Handle: RePEc:bla:mathfi:v:2:y:1992:i:4:p:217-237
Contact details of provider: Web page:

Order Information: Web:

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:2:y:1992:i:4:p:217-237. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.