IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Option Pricing with Asymmetric Heteroskedastic Normal Mixture Models

Listed author(s):
  • Jeroen Rombouts
  • Lars Peter Stentoft

This paper uses asymmetric heteroskedastic normal mixture models to fit return data and to price options. The models can be estimated straightforwardly by maximum likelihood, have high statistical fit when used on S&P 500 index return data, and allow for substantial negative skewness and time varying higher order moments of the risk neutral distribution. When forecasting out-of-sample a large set of index options between 1996 and 2009, substantial improvements are found compared to several benchmark models in terms of dollar losses and the ability to explain the smirk in implied volatilities. Overall, the dollar root mean squared error of the best performing benchmark component model is 39% larger than for the mixture model. When considering the recent financial crisis this difference increases to 69%. Dans le présent document, nous avons recours aux modèles hétéroscédastiques asymétriques avec mélange de distributions normales pour ajuster les données sur les rendements et fixer les prix des options. Les modèles peuvent être estimés directement par le maximum de vraisemblance, ils comportent un ajustement statistique élevé quand ils sont utilisés sur les données de rendement de l'indice S&P 500, et ils permettent de tenir compte d'une asymétrie négative importante et des moments d'ordre élevé variant dans le temps liés à la distribution du risque nul. Dans le cas des prévisions hors-échantillonnage concernant une vaste gamme d'options sur indice entre 1996 et 2009, nous constatons des améliorations substantielles, par rapport à plusieurs modèles de référence, en termes de pertes exprimées en dollars et de capacité d'expliquer le caractère ironique des volatilités implicites. En général, la racine de l'erreur quadratique moyenne du modèle de référence à composantes le plus efficace est 39 % plus grande que dans le cas du modèle à mélange. Dans le contexte de la récente crise financière, cette différence augmente à 69 %.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by CIRANO in its series CIRANO Working Papers with number 2010s-38.

in new window

Length: 48 pages
Date of creation: 01 Sep 2010
Handle: RePEc:cir:cirwor:2010s-38
Contact details of provider: Postal:
1130 rue Sherbrooke Ouest, suite 1400, Montréal, Quéc, H3A 2M8

Phone: (514) 985-4000
Fax: (514) 985-4039
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Lars Stentoft, 2008. "American Option Pricing Using GARCH Models and the Normal Inverse Gaussian Distribution," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 6(4), pages 540-582, Fall.
  2. Luc Bauwens & Arie Preminger & Jeroen V. K. Rombouts, 2010. "Theory and inference for a Markov switching GARCH model," Econometrics Journal, Royal Economic Society, vol. 13(2), pages 218-244, 07.
  3. BOUADDI, Mohammed & ROMBOUTS, Jeroen V.K., 2007. "Mixed exponential power asymmetric conditional heteroskedasticity," CORE Discussion Papers 2007097, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  4. Stentoft, Lars, 2005. "Pricing American options when the underlying asset follows GARCH processes," Journal of Empirical Finance, Elsevier, vol. 12(4), pages 576-611, September.
  5. Rombouts, Jeroen & Stentoft, Lars & Violante, Franceso, 2014. "The value of multivariate model sophistication: An application to pricing Dow Jones Industrial Average options," International Journal of Forecasting, Elsevier, vol. 30(1), pages 78-98.
  6. Peter Christoffersen & Kris Jacobs, 2004. "Which GARCH Model for Option Valuation?," Management Science, INFORMS, vol. 50(9), pages 1204-1221, September.
  7. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Centre de Recherche en Economie et Statistique.
  8. L. Bauwens & J. V. K. Rombouts, 2007. "Bayesian Clustering of Many Garch Models," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 365-386.
  9. H. Bertholon & A. Monfort & F. Pegoraro, 2008. "Econometric Asset Pricing Modelling," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 6(4), pages 407-458, Fall.
  10. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
  11. Christoffersen, Peter & Heston, Steve & Jacobs, Kris, 2006. "Option valuation with conditional skewness," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 253-284.
  12. Gourieroux, C. & Monfort, A., 2007. "Econometric specification of stochastic discount factor models," Journal of Econometrics, Elsevier, vol. 136(2), pages 509-530, February.
  13. Rabah Amir, 2005. "Supermodularity and Complementarity in Economics: An Elementary Survey," Southern Economic Journal, Southern Economic Association, vol. 71(3), pages 636-660, January.
  14. Peter Christoffersen & Steven Heston & Kris Jacobs, 2013. "Capturing Option Anomalies with a Variance-Dependent Pricing Kernel," Review of Financial Studies, Society for Financial Studies, vol. 26(8), pages 1963-2006.
  15. Bauwens, L. & Hafner, C.M. & Rombouts, J.V.K., 2007. "Multivariate mixed normal conditional heteroskedasticity," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3551-3566, April.
  16. Chernov, Mikhail & Ghysels, Eric, 2000. "A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation," Journal of Financial Economics, Elsevier, vol. 56(3), pages 407-458, June.
  17. Peter Christoffersen & Redouane Elkamhi & Bruno Feunou & Kris Jacobs, 2010. "Option Valuation with Conditional Heteroskedasticity and Nonnormality," Review of Financial Studies, Society for Financial Studies, vol. 23(5), pages 2139-2183.
  18. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 2000. "Pricing and hedging long-term options," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 277-318.
  19. Winfried Pohlmeier & Luc Bauwens & David Veredas, 2007. "High frequency financial econometrics. Recent developments," ULB Institutional Repository 2013/136223, ULB -- Universite Libre de Bruxelles.
  20. Rombouts, Jeroen V.K. & Stentoft, Lars, 2014. "Bayesian option pricing using mixed normal heteroskedasticity models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 588-605.
  21. Markus Haas, 2004. "Mixed Normal Conditional Heteroskedasticity," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(2), pages 211-250.
  22. Becker, Ralf & Clements, Adam E., 2008. "Are combination forecasts of S&P 500 volatility statistically superior?," International Journal of Forecasting, Elsevier, vol. 24(1), pages 122-133.
  23. Jin-Chuan Duan & Peter Ritchken & Zhiqiang Sun, 2006. "Approximating Garch-Jump Models, Jump-Diffusion Processes, And Option Pricing," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 21-52.
  24. Awartani, Basel M.A. & Corradi, Valentina, 2005. "Predicting the volatility of the S&P-500 stock index via GARCH models: the role of asymmetries," International Journal of Forecasting, Elsevier, vol. 21(1), pages 167-183.
  25. Rombouts, Jeroen V.K. & Stentoft, Lars, 2011. "Multivariate option pricing with time varying volatility and correlations," Journal of Banking & Finance, Elsevier, vol. 35(9), pages 2267-2281, September.
  26. Christoffersen, Peter & Jacobs, Kris & Ornthanalai, Chayawat & Wang, Yintian, 2008. "Option valuation with long-run and short-run volatility components," Journal of Financial Economics, Elsevier, vol. 90(3), pages 272-297, December.
  27. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
  28. Christoffersen, Peter & Jacobs, Kris & Ornthanalai, Chayawat, 2012. "Dynamic jump intensities and risk premiums: Evidence from S&P500 returns and options," Journal of Financial Economics, Elsevier, vol. 106(3), pages 447-472.
  29. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Theory Of Valuation, chapter 8, pages 229-288 World Scientific Publishing Co. Pte. Ltd..
  30. K. Hsieh & P. Ritchken, 2005. "An empirical comparison of GARCH option pricing models," Review of Derivatives Research, Springer, vol. 8(3), pages 129-150, December.
  31. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
  32. Peter R. Hansen & Asger Lunde & James M. Nason, 2011. "The Model Confidence Set," Econometrica, Econometric Society, vol. 79(2), pages 453-497, 03.
  33. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
  34. Badescu Alex & Kulperger Reg & Lazar Emese, 2008. "Option Valuation with Normal Mixture GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(2), pages 1-42, May.
  35. James D. Hamilton & Daniel F. Waggoner & Tao Zha, 2007. "Normalization in Econometrics," Econometric Reviews, Taylor & Francis Journals, vol. 26(2-4), pages 221-252.
  36. Jin-Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32.
  37. C. S. Wong & W. K. Li, 2000. "On a mixture autoregressive model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 95-115.
  38. Engle, Robert F & Ng, Victor K, 1993. " Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
  39. Christoffersen, Peter & Dorion, Christian & Jacobs, Kris & Wang, Yintian, 2010. "Volatility Components, Affine Restrictions, and Nonnormal Innovations," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(4), pages 483-502.
  40. Broda, Simon A. & Haas, Markus & Krause, Jochen & Paolella, Marc S. & Steude, Sven C., 2013. "Stable mixture GARCH models," Journal of Econometrics, Elsevier, vol. 172(2), pages 292-306.
  41. Heston, Steven L & Nandi, Saikat, 2000. "A Closed-Form GARCH Option Valuation Model," Review of Financial Studies, Society for Financial Studies, vol. 13(3), pages 585-625.
  42. repec:dau:papers:123456789/1392 is not listed on IDEAS
  43. Helyette Geman & P. Carr & D. Madan & M. Yor, 2003. "Stochastic Volatility for Levy Processes," Post-Print halshs-00144385, HAL.
  44. Bates, David S., 2003. "Empirical option pricing: a retrospection," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 387-404.
  45. Bates, David S., 2000. "Post-'87 crash fears in the S&P 500 futures option market," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 181-238.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2010s-38. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.