IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

What we can learn from pricing 139,879 Individual Stock Options

  • Lars Stentoft

    ()

    (HEC Montréal, CIRANO, CIRPEÉ, and CREATES)

The GARCH framework has been used for option pricing with quite some success. While the initial work assumed conditional Gaussian innovations, recent contributions relax this assumption and allow for more flexible parametric specifications of the underlying distribution. However, until now the empirical applications have been limited to index options or options on only a few stocks and this using only few potential distributions and variance specififications. In this paper we test the GARCH framework on 30 stocks in the Dow Jones Industrial Average using two classical volatility specififications and 7 different underlying distributions. Our results provide clear support for using an asymmetric volatility specifification together with non-Gaussian distribution, particularly of the Normal Inverse Gaussian type, and statistical tests show that this model is most frequently among the set of best performing models.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: ftp://ftp.econ.au.dk/creates/rp/11/rp11_52.pdf
Download Restriction: no

Paper provided by School of Economics and Management, University of Aarhus in its series CREATES Research Papers with number 2011-52.

as
in new window

Length: 54
Date of creation: 21 Dec 2011
Date of revision:
Handle: RePEc:aah:create:2011-52
Contact details of provider: Web page: http://www.econ.au.dk/afn/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Lehar, Alfred & Scheicher, Martin & Schittenkopf, Christian, 2002. "GARCH vs. stochastic volatility: Option pricing and risk management," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 323-345, March.
  2. Härdle, Wolfgang & Hafner, Christian M., 1997. "Discrete time option pricing with flexible volatility estimation," SFB 373 Discussion Papers 1997,56, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  3. Duan, Jin-Chuan & Zhang, Hua, 2001. "Pricing Hang Seng Index options around the Asian financial crisis - A GARCH approach," Journal of Banking & Finance, Elsevier, vol. 25(11), pages 1989-2014, November.
  4. Jeroen Rombouts & Lars Peter Stentoft, 2010. "Multivariate Option Pricing With Time Varying Volatility and Correlations," CIRANO Working Papers 2010s-23, CIRANO.
  5. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
  6. Gourieroux, C. & Monfort, A., 2007. "Econometric specification of stochastic discount factor models," Journal of Econometrics, Elsevier, vol. 136(2), pages 509-530, February.
  7. Bollerslev, Tim & Ole Mikkelsen, Hans, 1999. "Long-term equity anticipation securities and stock market volatility dynamics," Journal of Econometrics, Elsevier, vol. 92(1), pages 75-99, September.
  8. Peter Christoffersen & Redouane Elkamhi & Bruno Feunou & Kris Jacobs, 2009. "Option Valuation with Conditional Heteroskedasticity and Non-Normality," CREATES Research Papers 2009-33, School of Economics and Management, University of Aarhus.
  9. Duan, Jin-Chuan & Simonato, Jean-Guy, 2001. "American option pricing under GARCH by a Markov chain approximation," Journal of Economic Dynamics and Control, Elsevier, vol. 25(11), pages 1689-1718, November.
  10. ROMBOUTS, Jeroen V. K. & STENTOFT, Lars, 2010. "Option pricing with asymmetric heteroskedastic normal mixture models," CORE Discussion Papers 2010049, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  11. Morten B. Jensen & Asger Lunde, 2001. "The NIG-S&ARCH model: a fat-tailed, stochastic, and autoregressive conditional heteroskedastic volatility model," Econometrics Journal, Royal Economic Society, vol. 4(2), pages 10.
  12. Lars Stentoft, 2008. "American Option Pricing Using GARCH Models and the Normal Inverse Gaussian Distribution," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 6(4), pages 540-582, Fall.
  13. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
  14. Stentoft, Lars, 2005. "Pricing American options when the underlying asset follows GARCH processes," Journal of Empirical Finance, Elsevier, vol. 12(4), pages 576-611, September.
  15. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
  16. Christoffersen, Peter & Heston, Steve & Jacobs, Kris, 2006. "Option valuation with conditional skewness," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 253-284.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:aah:create:2011-52. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.