IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v26y2002i2-3p323-345.html
   My bibliography  Save this article

GARCH vs. stochastic volatility: Option pricing and risk management

Author

Listed:
  • Lehar, Alfred
  • Scheicher, Martin
  • Schittenkopf, Christian

Abstract

No abstract is available for this item.

Suggested Citation

  • Lehar, Alfred & Scheicher, Martin & Schittenkopf, Christian, 2002. "GARCH vs. stochastic volatility: Option pricing and risk management," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 323-345, March.
  • Handle: RePEc:eee:jbfina:v:26:y:2002:i:2-3:p:323-345
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-4266(01)00225-4
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter A. Abken & Saikat Nandi, 1996. "Options and volatility," Economic Review, Federal Reserve Bank of Atlanta, issue Dec, pages 21-35.
    2. Christoffersen, Peter & Hahn, Jinyong & Inoue, Atsushi, 2001. "Testing and comparing Value-at-Risk measures," Journal of Empirical Finance, Elsevier, vol. 8(3), pages 325-342, July.
    3. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 2000. "Pricing and hedging long-term options," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 277-318.
    4. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    5. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. " Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    6. Matthew Pritsker, 1997. "Evaluating Value at Risk Methodologies: Accuracy versus Computational Time," Journal of Financial Services Research, Springer;Western Finance Association, vol. 12(2), pages 201-242, October.
    7. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    8. Engle, Robert F. & Mustafa, Chowdhury, 1992. "Implied ARCH models from options prices," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 289-311.
    9. Lamoureux, Christopher G & Lastrapes, William D, 1993. "Forecasting Stock-Return Variance: Toward an Understanding of Stochastic Implied Volatilities," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 293-326.
    10. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    11. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    12. Jin-Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32.
    13. Engle, Robert F & Ng, Victor K, 1993. " Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    14. Vlaar, Peter J. G., 2000. "Value at risk models for Dutch bond portfolios," Journal of Banking & Finance, Elsevier, vol. 24(7), pages 1131-1154, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asai, M. & Caporin, M., 2009. "Block Structure Multivariate Stochastic Volatility Models," Econometric Institute Research Papers EI 2009-51, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. Peter Christoffersen & Kris Jacobs & Chayawat Ornthanalai, 2012. "GARCH Option Valuation: Theory and Evidence," CREATES Research Papers 2012-50, Department of Economics and Business Economics, Aarhus University.
    3. Nikola Radivojevic & Milena Cvjetkovic & Saša Stepanov, 2016. "The new hybrid value at risk approach based on the extreme value theory," Estudios de Economia, University of Chile, Department of Economics, vol. 43(1 Year 20), pages 29-52, June.
    4. Ben R. Craig & Ernst Glatzer & Joachim G. Keller & Martin Scheicher, 2003. "The forecasting performance of German stock option densities," Working Paper 0312, Federal Reserve Bank of Cleveland.
    5. Asai, Manabu & Caporin, Massimiliano & McAleer, Michael, 2015. "Forecasting Value-at-Risk using block structure multivariate stochastic volatility models," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 40-50.
    6. Konstantinos Kyritsis & N Antoniadis, 2005. "Option Pricing Based On The Concept Of Insurance: Market Models-Free Methods That Give As Special Case The Black- Scholes Option Pricing," Post-Print hal-01552353, HAL.
    7. Lim, G.C. & Martin, G.M. & Martin, V.L., 2006. "Pricing currency options in the presence of time-varying volatility and non-normalities," Journal of Multinational Financial Management, Elsevier, vol. 16(3), pages 291-314, July.
    8. Lin, Shin-Hung & Huang, Hung-Hsi & Li, Sheng-Han, 2015. "Option pricing under truncated Gram–Charlier expansion," The North American Journal of Economics and Finance, Elsevier, vol. 32(C), pages 77-97.
    9. Michele Leonardo Bianchi & Frank J. Fabozzi & Svetlozar T. Rachev, 2014. "Calibrating the Italian smile with time-varying volatility and heavy-tailed models," Temi di discussione (Economic working papers) 944, Bank of Italy, Economic Research and International Relations Area.
    10. Mustafa Caglayan & Ozge Kandemir Kocaaslan & Kostas Mouratidis, 2016. "Regime Dependent Effects of Inflation Uncertainty on Real Growth: A Markov Switching Approach," Scottish Journal of Political Economy, Scottish Economic Society, vol. 63(2), pages 135-155, May.
    11. Mahringer, Steffen & Prokopczuk, Marcel, 2015. "An empirical model comparison for valuing crack spread options," Energy Economics, Elsevier, vol. 51(C), pages 177-187.
    12. Mustafa Caglayan & Ozge Kandemir & Kostas Mouratidis, 2011. "Real effects of inflation uncertainty in the US," Working Papers 2011002, The University of Sheffield, Department of Economics, revised Feb 2015.
    13. Christian Bauer, 2007. "A Better Asymmetric Model of Changing Volatility in Stock and Exchange Rate Returns: Trend-GARCH," The European Journal of Finance, Taylor & Francis Journals, vol. 13(1), pages 65-87.
    14. Lars Stentoft, 2011. "What we can learn from pricing 139,879 Individual Stock Options," CREATES Research Papers 2011-52, Department of Economics and Business Economics, Aarhus University.
    15. Papantonis, Ioannis, 2016. "Volatility risk premium implications of GARCH option pricing models," Economic Modelling, Elsevier, vol. 58(C), pages 104-115.
    16. Grané, A. & Veiga, H., 2008. "Accurate minimum capital risk requirements: A comparison of several approaches," Journal of Banking & Finance, Elsevier, vol. 32(11), pages 2482-2492, November.
    17. Glatzer, Ernst & Scheicher, Martin, 2003. "Modelling the implied probability of stock market movements," Working Paper Series 212, European Central Bank.
    18. George Skiadopoulos & Dimitris Psychoyios, 2006. "Implied Volatility Process: Evidence from the Volatility Derivatives Markets," Working Papers wpn06-17, Warwick Business School, Finance Group.
    19. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    20. Jin-Chuan Duan & Peter H. Ritchken & Zhiqiang Sun, 2006. "Jump starting GARCH: pricing and hedging options with jumps in returns and volatilities," Working Paper 0619, Federal Reserve Bank of Cleveland.
    21. Prateek Sharma & Vipul _, 2015. "Forecasting stock index volatility with GARCH models: international evidence," Studies in Economics and Finance, Emerald Group Publishing, vol. 32(4), pages 445-463, October.
    22. Joanna Górka, 2014. "Option Pricing under Sign RCA-GARCH Models," Dynamic Econometric Models, Uniwersytet Mikolaja Kopernika, vol. 14, pages 145-160.
    23. Jouchi Nakajima, 2008. "EGARCH and Stochastic Volatility: Modeling Jumps and Heavy-tails for Stock Returns," IMES Discussion Paper Series 08-E-23, Institute for Monetary and Economic Studies, Bank of Japan.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:26:y:2002:i:2-3:p:323-345. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jbf .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.