IDEAS home Printed from https://ideas.repec.org/a/eee/jbfina/v111y2020ics0378426619303000.html
   My bibliography  Save this article

Pricing individual stock options using both stock and market index information

Author

Listed:
  • Rombouts, Jeroen V.K.
  • Stentoft, Lars
  • Violante, Francesco

Abstract

When it comes to individual stock option pricing, most applications consider a univariate framework. From a theoretical point of view this is unsatisfactory as we know that the expected return of any asset is closely related to the exposure to the market risk factors. To address this, we model the evolution of the individual stock returns together with the market index returns in a flexible bivariate model in line with theory. The model parameters are estimated using both historical returns and aggregated option data from the index and the individual stocks. We assess the model performance by pricing a large set of individual stock options on 26 major US stocks over a long time period including the global financial crisis. Our results show that the losses from using a univariate formulation amounts to 11% on average when compared to our preferred bivariate specification.

Suggested Citation

  • Rombouts, Jeroen V.K. & Stentoft, Lars & Violante, Francesco, 2020. "Pricing individual stock options using both stock and market index information," Journal of Banking & Finance, Elsevier, vol. 111(C).
  • Handle: RePEc:eee:jbfina:v:111:y:2020:i:c:s0378426619303000
    DOI: 10.1016/j.jbankfin.2019.105727
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378426619303000
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jbankfin.2019.105727?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
    2. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    3. Lars Stentoft, 2008. "American Option Pricing Using GARCH Models and the Normal Inverse Gaussian Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 540-582, Fall.
    4. Stentoft, Lars, 2005. "Pricing American options when the underlying asset follows GARCH processes," Journal of Empirical Finance, Elsevier, vol. 12(4), pages 576-611, September.
    5. Peter Christoffersen & Mathieu Fournier & Kris Jacobs, 2018. "The Factor Structure in Equity Options," The Review of Financial Studies, Society for Financial Studies, vol. 31(2), pages 595-637.
    6. Peter Christoffersen & Kris Jacobs, 2004. "Which GARCH Model for Option Valuation?," Management Science, INFORMS, vol. 50(9), pages 1204-1221, September.
    7. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    8. Kanniainen, Juho & Lin, Binghuan & Yang, Hanxue, 2014. "Estimating and using GARCH models with VIX data for option valuation," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 200-211.
    9. Francq, Christian & Zakoïan, Jean-Michel, 2018. "Estimation risk for the VaR of portfolios driven by semi-parametric multivariate models," Journal of Econometrics, Elsevier, vol. 205(2), pages 381-401.
    10. Christian M. Hafner & Wolfgang HÄrdle, 2000. "Discrete time option pricing with flexible volatility estimation," Finance and Stochastics, Springer, vol. 4(2), pages 189-207.
    11. Duan, Jin-Chuan & Zhang, Hua, 2001. "Pricing Hang Seng Index options around the Asian financial crisis - A GARCH approach," Journal of Banking & Finance, Elsevier, vol. 25(11), pages 1989-2014, November.
    12. Lehar, Alfred & Scheicher, Martin & Schittenkopf, Christian, 2002. "GARCH vs. stochastic volatility: Option pricing and risk management," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 323-345, March.
    13. Peter Christoffersen & Redouane Elkamhi & Bruno Feunou & Kris Jacobs, 2010. "Option Valuation with Conditional Heteroskedasticity and Nonnormality," The Review of Financial Studies, Society for Financial Studies, vol. 23(5), pages 2139-2183.
    14. Tzang, Shyh-Weir & Wang, Chou-Wen & Yu, Min-Teh, 2016. "Systematic risk and volatility skew," International Review of Economics & Finance, Elsevier, vol. 43(C), pages 72-87.
    15. Bollerslev, Tim & Ole Mikkelsen, Hans, 1996. "Modeling and pricing long memory in stock market volatility," Journal of Econometrics, Elsevier, vol. 73(1), pages 151-184, July.
    16. Elise Gourier, 2016. "Pricing of Idiosyncratic Equity and Variance Risks," Working Papers 781, Queen Mary University of London, School of Economics and Finance.
    17. George J. Jiang & Yisong S. Tian, 2005. "The Model-Free Implied Volatility and Its Information Content," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1305-1342.
    18. Rombouts, Jeroen V.K. & Stentoft, Lars, 2011. "Multivariate option pricing with time varying volatility and correlations," Journal of Banking & Finance, Elsevier, vol. 35(9), pages 2267-2281, September.
    19. K. Hsieh & P. Ritchken, 2005. "An empirical comparison of GARCH option pricing models," Review of Derivatives Research, Springer, vol. 8(3), pages 129-150, December.
    20. Gonzalez-Rivera, Gloria, 1996. "Time-varying risk The case of the American computer industry," Journal of Empirical Finance, Elsevier, vol. 2(4), pages 333-342, February.
    21. Gurdip Bakshi & Nikunj Kapadia & Dilip Madan, 2003. "Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options," The Review of Financial Studies, Society for Financial Studies, vol. 16(1), pages 101-143.
    22. Jin‐Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32, January.
    23. Peter Carr & Liuren Wu, 2009. "Variance Risk Premiums," The Review of Financial Studies, Society for Financial Studies, vol. 22(3), pages 1311-1341, March.
    24. Christoffersen, Peter & Dorion, Christian & Jacobs, Kris & Wang, Yintian, 2010. "Volatility Components, Affine Restrictions, and Nonnormal Innovations," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(4), pages 483-502.
    25. Jean-Guy Simonato & Lars Stentoft, 2015. "Which pricing approach for options under GARCH with non-normal innovations?," CREATES Research Papers 2015-32, Department of Economics and Business Economics, Aarhus University.
    26. Jean-François Bégin & Christian Dorion & Geneviève Gauthier, 2020. "Idiosyncratic Jump Risk Matters: Evidence from Equity Returns and Options," The Review of Financial Studies, Society for Financial Studies, vol. 33(1), pages 155-211.
    27. Joost Driessen & Pascal J. Maenhout & Grigory Vilkov, 2009. "The Price of Correlation Risk: Evidence from Equity Options," Journal of Finance, American Finance Association, vol. 64(3), pages 1377-1406, June.
    28. Bollerslev, Tim & Ole Mikkelsen, Hans, 1999. "Long-term equity anticipation securities and stock market volatility dynamics," Journal of Econometrics, Elsevier, vol. 92(1), pages 75-99, September.
    29. Heston, Steven L & Nandi, Saikat, 2000. "A Closed-Form GARCH Option Valuation Model," The Review of Financial Studies, Society for Financial Studies, vol. 13(3), pages 585-625.
    30. Boyle, Phelim P., 1977. "Options: A Monte Carlo approach," Journal of Financial Economics, Elsevier, vol. 4(3), pages 323-338, May.
    31. Elise Gourier, 2016. "Pricing of Idiosyncratic Equity and Variance Risks," Working Papers 781, Queen Mary University of London, School of Economics and Finance.
    32. Duan, Jin-Chuan & Wei, Jason, 2005. "Executive stock options and incentive effects due to systematic risk," Journal of Banking & Finance, Elsevier, vol. 29(5), pages 1185-1211, May.
    33. Turtle, Harry & Buse, Adolf & Korkie, Bob, 1994. "Tests of Conditional Asset Pricing with Time-Varying Moments and Risk Prices," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 29(1), pages 15-29, March.
    34. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Escobar-Anel, Marcos & Rastegari, Javad & Stentoft, Lars, 2023. "Covariance dependent kernels, a Q-affine GARCH for multi-asset option pricing," International Review of Financial Analysis, Elsevier, vol. 87(C).
    2. Escobar-Anel, Marcos & Rastegari, Javad & Stentoft, Lars, 2020. "Affine multivariate GARCH models," Journal of Banking & Finance, Elsevier, vol. 118(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lars Stentoft, 2013. "American option pricing using simulation with an application to the GARCH model," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 5, pages 114-147, Edward Elgar Publishing.
    2. Rombouts, Jeroen & Stentoft, Lars & Violante, Franceso, 2014. "The value of multivariate model sophistication: An application to pricing Dow Jones Industrial Average options," International Journal of Forecasting, Elsevier, vol. 30(1), pages 78-98.
    3. Lars Stentoft, 2008. "American Option Pricing Using GARCH Models and the Normal Inverse Gaussian Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 540-582, Fall.
    4. Stentoft, Lars, 2011. "American option pricing with discrete and continuous time models: An empirical comparison," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 880-902.
    5. Peter Christoffersen & Kris Jacobs & Chayawat Ornthanalai, 2012. "GARCH Option Valuation: Theory and Evidence," CREATES Research Papers 2012-50, Department of Economics and Business Economics, Aarhus University.
    6. Papantonis, Ioannis, 2016. "Volatility risk premium implications of GARCH option pricing models," Economic Modelling, Elsevier, vol. 58(C), pages 104-115.
    7. Hatem Ben-Ameur & Michèle Breton & Juan-Manuel Martinez, 2009. "Dynamic Programming Approach for Valuing Options in the GARCH Model," Management Science, INFORMS, vol. 55(2), pages 252-266, February.
    8. Lars Stentoft, 2011. "What we can learn from pricing 139,879 Individual Stock Options," CREATES Research Papers 2011-52, Department of Economics and Business Economics, Aarhus University.
    9. Michèle Breton & Javier de Frutos, 2010. "Option Pricing Under GARCH Processes Using PDE Methods," Operations Research, INFORMS, vol. 58(4-part-2), pages 1148-1157, August.
    10. Rombouts, Jeroen V.K. & Stentoft, Lars, 2015. "Option pricing with asymmetric heteroskedastic normal mixture models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 635-650.
    11. Rombouts, Jeroen V.K. & Stentoft, Lars, 2011. "Multivariate option pricing with time varying volatility and correlations," Journal of Banking & Finance, Elsevier, vol. 35(9), pages 2267-2281, September.
    12. Len, Angel & Vaello-Sebasti, Antoni, 2009. "American GARCH employee stock option valuation," Journal of Banking & Finance, Elsevier, vol. 33(6), pages 1129-1143, June.
    13. Stentoft, Lars, 2005. "Pricing American options when the underlying asset follows GARCH processes," Journal of Empirical Finance, Elsevier, vol. 12(4), pages 576-611, September.
    14. Rombouts, Jeroen V.K. & Stentoft, Lars, 2014. "Bayesian option pricing using mixed normal heteroskedasticity models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 588-605.
    15. Liu, Yanxin & Li, Johnny Siu-Hang & Ng, Andrew Cheuk-Yin, 2015. "Option pricing under GARCH models with Hansen's skewed-t distributed innovations," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 108-125.
    16. Oh, Dong Hwan & Park, Yang-Ho, 2023. "GARCH option pricing with volatility derivatives," Journal of Banking & Finance, Elsevier, vol. 146(C).
    17. Chiang, Min-Hsien & Huang, Hsin-Yi, 2011. "Stock market momentum, business conditions, and GARCH option pricing models," Journal of Empirical Finance, Elsevier, vol. 18(3), pages 488-505, June.
    18. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    19. Rachid Belhachemi, 2024. "Option Valuation with Conditional Heteroskedastic Hidden Truncation Models," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2585-2601, June.
    20. Matthias R. Fengler & Helmut Herwartz & Christian Werner, 2012. "A Dynamic Copula Approach to Recovering the Index Implied Volatility Skew," Journal of Financial Econometrics, Oxford University Press, vol. 10(3), pages 457-493, June.

    More about this item

    Keywords

    American option pricing; Economic loss; Forecasting; Multivariate GARCH;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:111:y:2020:i:c:s0378426619303000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jbf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.