IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

An empirical comparison of GARCH option pricing models

  • K. Hsieh

    ()

  • P. Ritchken

    ()

Registered author(s):

    Recent empirical studies have shown that GARCH models can be successfully used to describe option prices. Pricing such contracts requires knowledge of the risk neutral cumulative return distribution. Since the analytical forms of these distributions are generally unknown, computationally intensive numerical schemes are required for pricing to proceed. Heston and Nandi (2000) consider a particular GARCH structure that permits analytical solutions for pricing European options and they provide empirical support for their model. The analytical tractability comes at a potential cost of realism in the underlying GARCH dynamics. In particular, their model falls in the affine family, whereas most GARCH models that have been examined fall in the non-affine family. This article takes a closer look at this model with the objective of establishing whether there is a cost to restricting focus to models in the affine family. We confirm Heston and Nandi's findings, namely that their model can explain a significant portion of the volatility smile. However, we show that a simple non affine NGARCH option model is superior in removing biases from pricing residuals for all moneyness and maturity categories especially for out-the-money contracts. The implications of this finding are examined. Copyright Springer Science+Business Media, LLC 2005

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://hdl.handle.net/10.1007/s11147-006-9001-3
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Article provided by Springer in its journal Review of Derivatives Research.

    Volume (Year): 8 (2005)
    Issue (Month): 3 (December)
    Pages: 129-150

    as
    in new window

    Handle: RePEc:kap:revdev:v:8:y:2005:i:3:p:129-150
    Contact details of provider: Web page: http://www.springerlink.com/link.asp?id=102989

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Andersen, Torben G. & Lund, Jesper, 1997. "Estimating continuous-time stochastic volatility models of the short-term interest rate," Journal of Econometrics, Elsevier, vol. 77(2), pages 343-377, April.
    2. Engle, Robert F & Ng, Victor K, 1993. " Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-78, December.
    3. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
    4. Duan, Jin-Chuan & Simonato, Jean-Guy, 2001. "American option pricing under GARCH by a Markov chain approximation," Journal of Economic Dynamics and Control, Elsevier, vol. 25(11), pages 1689-1718, November.
    5. Bernard Dumas & Jeff Fleming & Robert E. Whaley, 1998. "Implied Volatility Functions: Empirical Tests," Journal of Finance, American Finance Association, vol. 53(6), pages 2059-2106, December.
    6. Stentoft, Lars, 2005. "Pricing American options when the underlying asset follows GARCH processes," Journal of Empirical Finance, Elsevier, vol. 12(4), pages 576-611, September.
    7. Duan, Jin-Chuan & Zhang, Hua, 2001. "Pricing Hang Seng Index options around the Asian financial crisis - A GARCH approach," Journal of Banking & Finance, Elsevier, vol. 25(11), pages 1989-2014, November.
    8. Duan, Jin-Chuan, 1997. "Augmented GARCH (p,q) process and its diffusion limit," Journal of Econometrics, Elsevier, vol. 79(1), pages 97-127, July.
    9. Jin-Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32.
    10. Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
    11. Jackwerth, Jens Carsten & Rubinstein, Mark, 1996. " Recovering Probability Distributions from Option Prices," Journal of Finance, American Finance Association, vol. 51(5), pages 1611-32, December.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:kap:revdev:v:8:y:2005:i:3:p:129-150. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn)

    or (Christopher F. Baum)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.