IDEAS home Printed from
MyIDEAS: Login to save this article or follow this journal

Estimating and using GARCH models with VIX data for option valuation

  • Kanniainen, Juho
  • Lin, Binghuan
  • Yang, Hanxue

This paper uses information on VIX to improve the empirical performance of GARCH models for pricing options on the S&P 500. In pricing multiple cross-sections of options, the models’ performance can clearly be improved by extracting daily spot volatilities from the series of VIX rather than by linking spot volatility with different dates by using the series of the underlying’s returns. Moreover, in contrast to traditional returns-based Maximum Likelihood Estimation (MLE), a joint MLE with returns and VIX improves option pricing performance, and for NGARCH, joint MLE can yield empirically almost the same out-of-sample option pricing performance as direct calibration does to in-sample options, but without costly computations. Finally, consistently with the existing research, this paper finds that non-affine models clearly outperform affine models.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Article provided by Elsevier in its journal Journal of Banking & Finance.

Volume (Year): 43 (2014)
Issue (Month): C ()
Pages: 200-211

in new window

Handle: RePEc:eee:jbfina:v:43:y:2014:i:c:p:200-211
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Tim Bollerslev & Michael S. Gibson & Hao Zhou, 2004. "Dynamic estimation of volatility risk premia and investor risk aversion from option-implied and realized volatilities," Finance and Economics Discussion Series 2004-56, Board of Governors of the Federal Reserve System (U.S.).
  2. Aït-Sahalia, Yacine & Mancini, Loriano, 2008. "Out of sample forecasts of quadratic variation," Journal of Econometrics, Elsevier, vol. 147(1), pages 17-33, November.
  3. Lawrence R. Glosten & Ravi Jagannathan & David E. Runkle, 1993. "On the relation between the expected value and the volatility of the nominal excess return on stocks," Staff Report 157, Federal Reserve Bank of Minneapolis.
  4. Christian Wolff & Dennis Bams & Thorsten Lehnert, 2008. "Loss Functions in Option Valuation: A Framework for Selection," LSF Research Working Paper Series 08-11, Luxembourg School of Finance, University of Luxembourg.
  5. Peter Christoffersen & Kris Jacobs & Chayawat Ornthanalai, 2012. "GARCH Option Valuation: Theory and Evidence," CREATES Research Papers 2012-50, School of Economics and Management, University of Aarhus.
  6. Christoffersen, Peter & Dorion, Christian & Jacobs, Kris & Wang, Yintian, 2010. "Volatility Components, Affine Restrictions, and Nonnormal Innovations," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(4), pages 483-502.
  7. Yingzi Zhu & Jin E. Zhang, 2007. "Variance Term Structure And Vix Futures Pricing," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 10(01), pages 111-127.
  8. Jinji Hao & Jin E. Zhang, 2013. "GARCH Option Pricing Models, the CBOE VIX, and Variance Risk Premium," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 11(3), pages 556-580, June.
  9. Carr, Peter & Wu, Liuren, 2007. "Stochastic skew in currency options," Journal of Financial Economics, Elsevier, vol. 86(1), pages 213-247, October.
  10. Charles Quanwei Cao & Gurdip S. Bakshi & Zhiwu Chen, 1997. "Empirical Performance of Alternative Option Pricing Models," Yale School of Management Working Papers ysm65, Yale School of Management.
  11. Jing-zhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time-Changed Lévy Processes," Journal of Finance, American Finance Association, vol. 59(3), pages 1405-1440, 06.
  12. Kaeck, Andreas & Alexander, Carol, 2012. "Volatility dynamics for the S&P 500: Further evidence from non-affine, multi-factor jump diffusions," Journal of Banking & Finance, Elsevier, vol. 36(11), pages 3110-3121.
  13. Jones, Christopher S., 2003. "The dynamics of stochastic volatility: evidence from underlying and options markets," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 181-224.
  14. Chernov, Mikhail & Ghysels, Eric, 2000. "A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation," Journal of Financial Economics, Elsevier, vol. 56(3), pages 407-458, June.
  15. Robert F. Engle & Victor K. Ng, 1991. "Measuring and Testing the Impact of News on Volatility," NBER Working Papers 3681, National Bureau of Economic Research, Inc.
  16. Mark Broadie & Mikhail Chernov & Michael Johannes, 2007. "Model Specification and Risk Premia: Evidence from Futures Options," Journal of Finance, American Finance Association, vol. 62(3), pages 1453-1490, 06.
  17. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
  18. Anders B. Trolle & Eduardo S. Schwartz, 2009. "Unspanned Stochastic Volatility and the Pricing of Commodity Derivatives," Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4423-4461, November.
  19. Jin-Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32.
  20. Ai[diaeresis]t-Sahalia, Yacine & Kimmel, Robert, 2007. "Maximum likelihood estimation of stochastic volatility models," Journal of Financial Economics, Elsevier, vol. 83(2), pages 413-452, February.
  21. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
  22. Bernard Dumas & Jeff Fleming & Robert E. Whaley, 1998. "Implied Volatility Functions: Empirical Tests," Journal of Finance, American Finance Association, vol. 53(6), pages 2059-2106, December.
  23. Duan, Jin-Chuan & Yeh, Chung-Ying, 2010. "Jump and volatility risk premiums implied by VIX," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2232-2244, November.
  24. Giovanni Barone-Adesi & Robert F. Engle & Loriano Mancini, 2008. "A GARCH Option Pricing Model with Filtered Historical Simulation," Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1223-1258, May.
  25. Jin-Chuan Duan & Jean-Guy Simonato, 1998. "Empirical Martingale Simulation for Asset Prices," Management Science, INFORMS, vol. 44(9), pages 1218-1233, September.
  26. K. Hsieh & P. Ritchken, 2005. "An empirical comparison of GARCH option pricing models," Review of Derivatives Research, Springer, vol. 8(3), pages 129-150, December.
  27. Lin, Yueh-Neng & Chang, Chien-Hung, 2010. "Consistent modeling of S&P 500 and VIX derivatives," Journal of Economic Dynamics and Control, Elsevier, vol. 34(11), pages 2302-2319, November.
  28. Egloff, Daniel & Leippold, Markus & Wu, Liuren, 2010. "The Term Structure of Variance Swap Rates and Optimal Variance Swap Investments," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(05), pages 1279-1310, October.
  29. Charles M. Beach & James G. MacKinnon, 1977. "Maximum Likelihood Estimation of Singular Equation Systems with Autoregressive Disturbances," Working Papers 276, Queen's University, Department of Economics.
  30. Peter Christoffersen & Kris Jacobs, 2004. "Which GARCH Model for Option Valuation?," Management Science, INFORMS, vol. 50(9), pages 1204-1221, September.
  31. Ser-Huang Poon & Clive W.J. Granger, 2003. "Forecasting Volatility in Financial Markets: A Review," Journal of Economic Literature, American Economic Association, vol. 41(2), pages 478-539, June.
  32. Heston, Steven L & Nandi, Saikat, 2000. "A Closed-Form GARCH Option Valuation Model," Review of Financial Studies, Society for Financial Studies, vol. 13(3), pages 585-625.
  33. Bakshi, Gurdip & Ju, Nengjiu & Ou-Yang, Hui, 2006. "Estimation of continuous-time models with an application to equity volatility dynamics," Journal of Financial Economics, Elsevier, vol. 82(1), pages 227-249, October.
  34. Jin-Chuan Duan & Jean-Guy Simonato, 1995. "Empirical Martingale Simulation for Asset Prices," CIRANO Working Papers 95s-43, CIRANO.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eee:jbfina:v:43:y:2014:i:c:p:200-211. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.