IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Specification Analysis of Option Pricing Models Based on Time-Changed Levy Processes

  • Jing-zhi Huang
  • Liuren Wu

This article analyzes the specifications of option pricing models based on time-changed Levy processes. We classify option pricing models based on (i) the structure of the jump component in the underlying return process, (ii) the source of stochastic volatility, and (iii) the specification of the volatility process itself. We then consider a variety of model specifications within this framework, and investigate empirically what type of jump structure best describe the underlying price movement and whether stochastic volatility comes from jump or diffusion. We find that, to capture the behavior of the S&P 500 index options, one needs to incorporate an infinite activity jump component in the underlying asset return process, and also to include stochastic volatilities from two separate sources: both the jump and the diffusion components

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://repec.org/esNAWM04/up.3307.1049148197.pdf
Download Restriction: no

Paper provided by Econometric Society in its series Econometric Society 2004 North American Winter Meetings with number 405.

as
in new window

Length:
Date of creation: 11 Aug 2004
Date of revision:
Handle: RePEc:ecm:nawm04:405
Contact details of provider: Phone: 1 212 998 3820
Fax: 1 212 995 4487
Web page: http://www.econometricsociety.org/pastmeetings.asp
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Eric Ghysels & Andrew Harvey & Éric Renault, 1995. "Stochastic Volatility," CIRANO Working Papers 95s-49, CIRANO.
  2. Bekaert, Geert & Wu, Guojun, 2000. "Asymmetric Volatility and Risk in Equity Markets," Review of Financial Studies, Society for Financial Studies, vol. 13(1), pages 1-42.
  3. John Y. Campbell & Albert S. Kyle, 1988. "Smart Money, Noise Trading and Stock Price Behavior," NBER Technical Working Papers 0071, National Bureau of Economic Research, Inc.
  4. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "A Theory of the Term Structure of Interest Rates," Econometrica, Econometric Society, vol. 53(2), pages 385-407, March.
  5. Donald W.K. Andrews, 1988. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Cowles Foundation Discussion Papers 877R, Cowles Foundation for Research in Economics, Yale University, revised Jul 1989.
  6. Ole E. Barndorff-Nielsen & Neil Shephard, 2001. "Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
  7. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
  8. Newey, Whitney K & West, Kenneth D, 1987. "A Simple, Positive Semi-definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix," Econometrica, Econometric Society, vol. 55(3), pages 703-08, May.
  9. Sanjiv R. Das & Rangarajan K. Sundaram, 1998. "Of Smiles and Smirks: A Term-Structure Perspective," New York University, Leonard N. Stern School Finance Department Working Paper Seires 98-024, New York University, Leonard N. Stern School of Business-.
  10. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-55, January.
  11. Peter Carr & Liuren Wu, 2003. "What Type of Process Underlies Options? A Simple Robust Test," Journal of Finance, American Finance Association, vol. 58(6), pages 2581-2610, December.
  12. Hentschel, Ludger & Campbell, John, 1992. "No News is Good News: An Asymmetric Model of Changing Volatility in Stock Returns," Scholarly Articles 3220232, Harvard University Department of Economics.
  13. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
  14. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
  15. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
  16. Yacine Aït-Sahalia & Andrew W. Lo, 1998. "Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices," Journal of Finance, American Finance Association, vol. 53(2), pages 499-547, 04.
  17. Lars Peter Hansen & Ravi Jagannathan, 1994. "Assessing Specification Errors in Stochastic Discount Factor Models," NBER Technical Working Papers 0153, National Bureau of Economic Research, Inc.
  18. Bates, David S., 2000. "Post-'87 crash fears in the S&P 500 futures option market," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 181-238.
  19. Leippold, Markus & Wu, Liuren, 2002. "Asset Pricing under the Quadratic Class," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 37(02), pages 271-295, June.
  20. Rubinstein, Mark, 1994. " Implied Binomial Trees," Journal of Finance, American Finance Association, vol. 49(3), pages 771-818, July.
  21. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
  22. Peter Carr & Liuren Wu, 2003. "The Finite Moment Log Stable Process and Option Pricing," Journal of Finance, American Finance Association, vol. 58(2), pages 753-778, 04.
  23. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2002. "An Empirical Investigation of Continuous-Time Equity Return Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1239-1284, 06.
  24. Ole E. Barndorff-Nielsen, 1997. "Processes of normal inverse Gaussian type," Finance and Stochastics, Springer, vol. 2(1), pages 41-68.
  25. Mark Rubinstein., 1994. "Implied Binomial Trees," Research Program in Finance Working Papers RPF-232, University of California at Berkeley.
  26. Haugen, Robert A & Talmor, Eli & Torous, Walter N, 1991. " The Effect of Volatility Changes on the Level of Stock Prices and Subsequent Expected Returns," Journal of Finance, American Finance Association, vol. 46(3), pages 985-1007, July.
  27. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
  28. Rama Cont & Jose da Fonseca, 2002. "Dynamics of implied volatility surfaces," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 45-60.
  29. Jackwerth, Jens Carsten & Rubinstein, Mark, 1996. " Recovering Probability Distributions from Option Prices," Journal of Finance, American Finance Association, vol. 51(5), pages 1611-32, December.
  30. Pan, Jun, 2002. "The jump-risk premia implicit in options: evidence from an integrated time-series study," Journal of Financial Economics, Elsevier, vol. 63(1), pages 3-50, January.
  31. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
  32. Ding, Zhuanxin & Granger, Clive W. J., 1996. "Modeling volatility persistence of speculative returns: A new approach," Journal of Econometrics, Elsevier, vol. 73(1), pages 185-215, July.
  33. Mikhail Chernov & A. Ronald Gallant & Eric Ghysels & George Tauchen, 1999. "A New Class of Stochastic Volatility Models with Jumps: Theory and Estimation," CIRANO Working Papers 99s-48, CIRANO.
  34. Frank Milne & Dilip Madan, 1991. "Option Pricing With V. G. Martingale Components," Working Papers 1159, Queen's University, Department of Economics.
  35. Aleksander Janicki & Aleksander Weron, 1994. "Simulation and Chaotic Behavior of Alpha-stable Stochastic Processes," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook9401.
  36. Darrell Duffie & Rui Kan, 1996. "A Yield-Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ecm:nawm04:405. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.