IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Maximum Likelihood Estimation of Singular Equation Systems with Autoregressive Disturbances

Listed author(s):
  • Charles M. Beach
  • James G. MacKinnon

Maximum likelihood estimation of equation systems with first-order autocorrelation should, in principle, take into account the first observation and associated stationarity condition. In the general case, this leads to computational difficulties compared with conventional procedures, which perhaps explains the failure of the latter to incorporate the initial observation. However, in a special case where the autoregressive process has only one parameter, which is widely used for single equation systems such as demand systems, taking the first observation into account is no more difficult than ignoring it. The paper presents empirical results of estimating a demand system with Canadian data which suggest that maximizing the full likelihood function can yield very different and more reasonable estimates than maximizing the conventional one.

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Paper provided by Queen's University, Department of Economics in its series Working Papers with number 276.

in new window

Length: 20
Date of creation: 1977
Publication status: Published in International Economic Review, 20, 1979
Handle: RePEc:qed:wpaper:276
Contact details of provider: Postal:
Kingston, Ontario, K7L 3N6

Phone: (613) 533-2250
Fax: (613) 533-6668
Web page:

More information through EDIRC

No references listed on IDEAS
You can help add them by filling out this form.

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:qed:wpaper:276. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mark Babcock)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.