IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this article

Empirical Martingale Simulation for Asset Prices

  • Jin-Chuan Duan

    (Department of Finance, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong)

  • Jean-Guy Simonato

    (École des Hautes Etudes Commerciales, 3000, Chemin de la Côte-Sainte-Catherine, Montréal, Quebec, Canada H3T 2A7)

Registered author(s):

    This paper proposes a simple modification to the standard Monte Carlo simulation procedure for computing the prices of derivative securities. The modification imposes the martingale property on the simulated sample paths of the underlying asset price. This procedure is referred to as the empirical martingale simulation (EMS). The EMS ensures that the price estimated by simulation satisfies the rational option pricing bounds. The EMS yields a substantial error reduction for the price estimate and can be easily coupled with the standard variance reduction methods. Simulation studies are conducted for European and Asian call options using both the Black and Scholes and GARCH option pricing frameworks. The results indicate that the EMS yields substantial variance reduction particularly for in- and at-the-money or longer-maturity options. The option price estimate based on the EMS is found to exhibit a minor small-sample bias only in few occasions. An analysis of the trade-off between computing time and price accuracy reveals that the EMS dominates the conventional simulation methods.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL: http://dx.doi.org/10.1287/mnsc.44.9.1218
    Download Restriction: no

    Article provided by INFORMS in its journal Management Science.

    Volume (Year): 44 (1998)
    Issue (Month): 9 (September)
    Pages: 1218-1233

    as
    in new window

    Handle: RePEc:inm:ormnsc:v:44:y:1998:i:9:p:1218-1233
    Contact details of provider: Postal:
    7240 Parkway Drive, Suite 300, Hanover, MD 21076 USA

    Phone: +1-443-757-3500
    Fax: 443-757-3515
    Web page: http://www.informs.org/
    Email:


    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    as in new window
    1. Turnbull, Stuart M. & Wakeman, Lee Macdonald, 1991. "A Quick Algorithm for Pricing European Average Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 26(03), pages 377-389, September.
    2. Peter Ritchken & L. Sankarasubramanian & Anand M. Vijh, 1993. "The Valuation of Path Dependent Contracts on the Average," Management Science, INFORMS, vol. 39(10), pages 1202-1213, October.
    3. Robert C. Merton, 1973. "Theory of Rational Option Pricing," Bell Journal of Economics, The RAND Corporation, vol. 4(1), pages 141-183, Spring.
    4. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    5. Jin-Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32.
    6. Boyle, Phelim P., 1977. "Options: A Monte Carlo approach," Journal of Financial Economics, Elsevier, vol. 4(3), pages 323-338, May.
    7. Lucas, Robert E, Jr, 1978. "Asset Prices in an Exchange Economy," Econometrica, Econometric Society, vol. 46(6), pages 1429-45, November.
    8. Jèôme Barraquand, 1995. "Numerical Valuation of High Dimensional Multivariate European Securities," Management Science, INFORMS, vol. 41(12), pages 1882-1891, December.
    9. Harrison, J. Michael & Pliska, Stanley R., 1981. "Martingales and stochastic integrals in the theory of continuous trading," Stochastic Processes and their Applications, Elsevier, vol. 11(3), pages 215-260, August.
    10. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
    11. J. Michael Harrison & Stanley R. Pliska, 1981. "Martingales and Stochastic Integrals in the Theory of Continous Trading," Discussion Papers 454, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    12. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    13. Boyle, Phelim & Broadie, Mark & Glasserman, Paul, 1997. "Monte Carlo methods for security pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1267-1321, June.
    14. Broadie, Mark & Detemple, Jerome, 1996. "American Option Valuation: New Bounds, Approximations, and a Comparison of Existing Methods," Review of Financial Studies, Society for Financial Studies, vol. 9(4), pages 1211-50.
    15. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:44:y:1998:i:9:p:1218-1233. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.