IDEAS home Printed from https://ideas.repec.org/a/cup/jfinqa/v30y1995i03p383-405_00.html
   My bibliography  Save this article

Numerical Valuation of High Dimensional Multivariate American Securities

Author

Listed:
  • Barraquand, Jérôme
  • Martineau, Didier

Abstract

We consider the problem of pricing an American contingent claim whose payoff depends on several sources of uncertainty. Several efficient numerical lattice-based techniques exist for pricing American securities depending on one or few (up to three) risk sources. However, these methods cannot be used for high dimensional problems, since their memory requirement is exponential in the number of risk sources. We present an efficient numerical technique that combines Monte Carlo simulation with a particular partitioning method of the underlying assets space, which we call Stratified State Aggregation (SSA). Using this technique, we can compute accurate approximations of prices of American securities with an arbitrary number of underlying assets. Our numerical experiments show that the method is practical for pricing American claims depending on up to 400 risk sources.

Suggested Citation

  • Barraquand, Jérôme & Martineau, Didier, 1995. "Numerical Valuation of High Dimensional Multivariate American Securities," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 30(03), pages 383-405, September.
  • Handle: RePEc:cup:jfinqa:v:30:y:1995:i:03:p:383-405_00
    as

    Download full text from publisher

    File URL: http://journals.cambridge.org/abstract_S0022109000000284
    File Function: link to article abstract page
    Download Restriction: no

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:jfinqa:v:30:y:1995:i:03:p:383-405_00. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Keith Waters). General contact details of provider: http://journals.cambridge.org/jid_JFQ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.