IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Option Valuation with Conditional Heteroskedasticity and Non-Normality

  • Peter Christoffersen
  • Redouane Elkamhi
  • Bruno Feunou
  • Kris Jacobs

We provide results for the valuation of European style contingent claims for a large class of specifications of the underlying asset returns. Our valuation results obtain in a discrete time, infinite state-space setup using the no-arbitrage principle and an equivalent martingale measure. Our approach allows for general forms of heteroskedasticity in returns, and valuation results for homoskedastic processes can be obtained as a special case. It also allows for conditional non-normal return innovations, which is critically important because heteroskedasticity alone does not suffice to capture the option smirk. We analyze a class of equivalent martingale measures for which the resulting risk-neutral return dynamics are from the same family of distributions as the physical return dynamics. In this case, our framework nests the valuation results obtained by Duan (1995) and Heston and Nandi (2000) by allowing for a time-varying price of risk and non-normal innovations. We provide extensions of these results to more general equivalent martingale measures and to discrete time stochastic volatility models, and we analyze the relation between our results and those obtained for continuous time models. Nous présentons les résultats d'une étude portant sur l'évaluation de créances éventuelles de style européen pour une grande variété de caractéristiques liées au rendement des actifs sous-jacents. Les résultats de notre évaluation proposent en temps discret une formule état-espace infinie, à partir du principe de non-arbitrage et d'une mesure de martingale équivalente. Notre approche permet de tenir compte de formes générales d'hétéroscédasticité dans les rendements et d'obtenir, dans des cas spéciaux, des résultats d'évaluation liés aux processus homoscédastiques. Elle permet aussi de considérer les innovations conditionnellement non normales en matière de rendement, ce qui représente un facteur critique, compte tenu du fait que l'hétéroscédasticité ne permet pas, à elle seule, de saisir pleinement le caractère ironique de l'option. Nous analysons une catégorie de mesures de martingale équivalentes dont la dynamique du rendement risque-neutre obtenu est de la même famille de distribution que la dynamique du rendement physique. Dans ce cas, notre cadre d'étude soutient les résultats d'évaluation obtenus par Duan (1995) et par Heston et Nandi (2000) et tient compte du coût du risque variant dans le temps et des innovations non normales. Nous étendons ces résultats aux mesures de martingale équivalentes plus générales et aux modèles de volatilité stochastique en temps discret et analysons aussi la relation entre nos résultats et ceux obtenus dans le cas des modèles en temps continu.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.cirano.qc.ca/files/publications/2009s-32.pdf
Download Restriction: no

Paper provided by CIRANO in its series CIRANO Working Papers with number 2009s-32.

as
in new window

Length: 53 pages
Date of creation: 01 Aug 2009
Date of revision:
Handle: RePEc:cir:cirwor:2009s-32
Contact details of provider: Postal: 1130 rue Sherbrooke Ouest, suite 1400, Montréal, Quéc, H3A 2M8
Phone: (514) 985-4000
Fax: (514) 985-4039
Web page: http://www.cirano.qc.ca/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. GHYSELS, Eric & HARVEY, Andrew & RENAULT, Eric, 1995. "Stochastic Volatility," CORE Discussion Papers 1995069, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  2. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
  3. Bates, David S., 2000. "Post-'87 crash fears in the S&P 500 futures option market," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 181-238.
  4. Carr, Peter & Wu, Liuren, 2004. "Time-changed Levy processes and option pricing," Journal of Financial Economics, Elsevier, vol. 71(1), pages 113-141, January.
  5. Ritchken, Peter H & Kuo, Shyanjaw, 1988. " Option Bounds with Finite Revision Opportunities," Journal of Finance, American Finance Association, vol. 43(2), pages 301-08, June.
  6. Peter Christoffersen & Kris Jacobs, 2004. "Which GARCH Model for Option Valuation?," Management Science, INFORMS, vol. 50(9), pages 1204-1221, September.
  7. Duan, Jin-Chuan, 1997. "Augmented GARCH (p,q) process and its diffusion limit," Journal of Econometrics, Elsevier, vol. 79(1), pages 97-127, July.
  8. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, 06.
  9. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  10. Francis X. Diebold & Jose A. Lopez, 1995. "Modeling volatility dynamics," Research Paper 9522, Federal Reserve Bank of New York.
  11. Charles Quanwei Cao & Gurdip S. Bakshi & Zhiwu Chen, 1997. "Empirical Performance of Alternative Option Pricing Models," Yale School of Management Working Papers ysm54, Yale School of Management.
  12. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
  13. John M. Maheu & Thomas H. McCurdy, 2003. "News Arrival, Jump Dynamics and Volatility Components for Individual Stock Returns," CIRANO Working Papers 2003s-38, CIRANO.
  14. Jing-zhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time-Changed Lévy Processes," Journal of Finance, American Finance Association, vol. 59(3), pages 1405-1440, 06.
  15. Mark Schroder, 2004. "Risk-Neutral Parameter Shifts and Derivatives Pricing in Discrete Time," Journal of Finance, American Finance Association, vol. 59(5), pages 2375-2402, October.
  16. Mark Broadie & Mikhail Chernov & Michael Johannes, 2007. "Model Specification and Risk Premia: Evidence from Futures Options," Journal of Finance, American Finance Association, vol. 62(3), pages 1453-1490, 06.
  17. Engle, Robert F & Ng, Victor K, 1993. " Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-78, December.
  18. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
  19. Peter Christoffersen & Steve Heston & Kris Jacobs, 2003. "Option Valuation with Conditional Skewness," CIRANO Working Papers 2003s-50, CIRANO.
  20. Hao Zhou & Tim Bollerslev & Michael Gibson, 2005. "Dynamic estimation of volatility risk premia and investor risk aversion from option-implied and realized volatilities," Proceedings, Board of Governors of the Federal Reserve System (U.S.).
  21. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
  22. Constantinides, George M. & Perrakis, Stylianos, 2002. "Stochastic dominance bounds on derivatives prices in a multiperiod economy with proportional transaction costs," Journal of Economic Dynamics and Control, Elsevier, vol. 26(7-8), pages 1323-1352, July.
  23. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
  24. Dean P. Foster & Daniel B. Nelson, 1994. "Continuous Record Asymptotics for Rolling Sample Variance Estimators," NBER Technical Working Papers 0163, National Bureau of Economic Research, Inc.
  25. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  26. G. William Schwert, 1990. "Why Does Stock Market Volatility Change Over Time?," NBER Working Papers 2798, National Bureau of Economic Research, Inc.
  27. Bjørn Eraker, 2004. "Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices," Journal of Finance, American Finance Association, vol. 59(3), pages 1367-1404, 06.
  28. Bollerslev, Tim & Ole Mikkelsen, Hans, 1999. "Long-term equity anticipation securities and stock market volatility dynamics," Journal of Econometrics, Elsevier, vol. 92(1), pages 75-99, September.
  29. Steven Heston, 2004. "Option valuation with infinitely divisible distributions," Quantitative Finance, Taylor & Francis Journals, vol. 4(5), pages 515-524.
  30. Corradi, Valentina, 2000. "Reconsidering the continuous time limit of the GARCH(1, 1) process," Journal of Econometrics, Elsevier, vol. 96(1), pages 145-153, May.
  31. Daniel B. Nelson & Dean P. Foster, 1994. "Asypmtotic Filtering Theory for Univariate Arch Models," NBER Technical Working Papers 0129, National Bureau of Economic Research, Inc.
  32. Heston, Steven L, 1993. " Invisible Parameters in Option Prices," Journal of Finance, American Finance Association, vol. 48(3), pages 933-47, July.
  33. Engle, Robert F & Lilien, David M & Robins, Russell P, 1987. "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model," Econometrica, Econometric Society, vol. 55(2), pages 391-407, March.
  34. Bates, David S., 2003. "Empirical option pricing: a retrospection," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 387-404.
  35. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
  36. He, Hua & Leland, Hayne, 1993. "On Equilibrium Asset Price Processes," Review of Financial Studies, Society for Financial Studies, vol. 6(3), pages 593-617.
  37. Ritchken, Peter H, 1985. " On Option Pricing Bounds," Journal of Finance, American Finance Association, vol. 40(4), pages 1219-33, September.
  38. Perrakis, Stylianos, 1986. "Option Bounds in Discrete Time: Extensions and the Pricing of the American Put," The Journal of Business, University of Chicago Press, vol. 59(1), pages 119-41, January.
  39. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
  40. Gourieroux, C. & Monfort, A., 2007. "Econometric specification of stochastic discount factor models," Journal of Econometrics, Elsevier, vol. 136(2), pages 509-530, February.
  41. Bick, Avi, 1990. " On Viable Diffusion Price Processes of the Market Portfolio," Journal of Finance, American Finance Association, vol. 45(2), pages 673-89, June.
  42. Levy, Haim, 1985. " Upper and Lower Bounds of Put and Call Option Value: Stochastic Dominance Approach," Journal of Finance, American Finance Association, vol. 40(4), pages 1197-1217, September.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2009s-32. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.