IDEAS home Printed from https://ideas.repec.org/p/usg/econwp/201702.html
   My bibliography  Save this paper

GARCH option pricing models with Meixner innovations

Author

Listed:
  • Fengler, Matthias

    ()

  • Melnikov, Alexander

    ()

Abstract

The paper presents GARCH option pricing models with Meixner-distributed innovations. The risk-neutral dynamics are derived by means of the conditional Esscher transform. Assessing the option pricing performance both in-sample and out-of-sample, we find that the models compare favorably against the benchmark models. Simulations suggest that the driver of these results is the impact of conditional skewness and conditional excess kurtosis on option prices.

Suggested Citation

  • Fengler, Matthias & Melnikov, Alexander, 2017. "GARCH option pricing models with Meixner innovations," Economics Working Paper Series 1702, University of St. Gallen, School of Economics and Political Science.
  • Handle: RePEc:usg:econwp:2017:02
    as

    Download full text from publisher

    File URL: http://ux-tauri.unisg.ch/RePEc/usg/econwp/EWP-1702.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Lars Stentoft, 2008. "American Option Pricing Using GARCH Models and the Normal Inverse Gaussian Distribution," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 6(4), pages 540-582, Fall.
    2. Christophe Chorro & Dominique Guégan & Florian Ielpo, 2012. "Option pricing for GARCH-type models with generalized hyperbolic innovations," Quantitative Finance, Taylor & Francis Journals, vol. 12(7), pages 1079-1094, April.
    3. Peter Christoffersen & Kris Jacobs, 2004. "Which GARCH Model for Option Valuation?," Management Science, INFORMS, vol. 50(9), pages 1204-1221, September.
    4. Matthias R. Fengler & Helmut Herwartz & Christian Werner, 2012. "A Dynamic Copula Approach to Recovering the Index Implied Volatility Skew," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 10(3), pages 457-493, June.
    5. Christoffersen, Peter & Heston, Steve & Jacobs, Kris, 2006. "Option valuation with conditional skewness," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 253-284.
    6. Gourieroux, C. & Monfort, A., 2007. "Econometric specification of stochastic discount factor models," Journal of Econometrics, Elsevier, vol. 136(2), pages 509-530, February.
    7. Christian M. Hafner & Wolfgang HÄrdle, 2000. "Discrete time option pricing with flexible volatility estimation," Finance and Stochastics, Springer, vol. 4(2), pages 189-207.
    8. Peter Christoffersen & Steven Heston & Kris Jacobs, 2013. "Capturing Option Anomalies with a Variance-Dependent Pricing Kernel," Review of Financial Studies, Society for Financial Studies, vol. 26(8), pages 1963-2006.
    9. Peter Christoffersen & Redouane Elkamhi & Bruno Feunou & Kris Jacobs, 2010. "Option Valuation with Conditional Heteroskedasticity and Nonnormality," Review of Financial Studies, Society for Financial Studies, vol. 23(5), pages 2139-2183.
    10. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    11. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters,in: Theory Of Valuation, chapter 8, pages 229-288 World Scientific Publishing Co. Pte. Ltd..
    12. Mercuri, Lorenzo, 2008. "Option pricing in a Garch model with tempered stable innovations," Finance Research Letters, Elsevier, vol. 5(3), pages 172-182, September.
    13. Meitz, Mika & Saikkonen, Pentti, 2011. "Parameter Estimation In Nonlinear Ar–Garch Models," Econometric Theory, Cambridge University Press, vol. 27(06), pages 1236-1278, December.
    14. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    15. Kadir G. Babaoglou & Peter Christoffersen & Steven L. Heston & Kris Jacobs, 2014. "Option Valuation with Volatility Components, Fat Tails, and Nonlinear Pricing Kernels," CREATES Research Papers 2015-55, Department of Economics and Business Economics, Aarhus University.
    16. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    17. Badescu, Alexandru M. & Kulperger, Reg J., 2008. "GARCH option pricing: A semiparametric approach," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 69-84, August.
    18. Jin-Chuan Duan & Jean-Guy Simonato, 1995. "Empirical Martingale Simulation for Asset Prices," CIRANO Working Papers 95s-43, CIRANO.
    19. Jin-Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32.
    20. Majewski, Adam A. & Bormetti, Giacomo & Corsi, Fulvio, 2015. "Smile from the past: A general option pricing framework with multiple volatility and leverage components," Journal of Econometrics, Elsevier, vol. 187(2), pages 521-531.
    21. Engle, Robert F & Lilien, David M & Robins, Russell P, 1987. "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model," Econometrica, Econometric Society, vol. 55(2), pages 391-407, March.
    22. Jin-Chuan Duan & Jean-Guy Simonato, 1998. "Empirical Martingale Simulation for Asset Prices," Management Science, INFORMS, vol. 44(9), pages 1218-1233, September.
    23. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    24. Giovanni Barone-Adesi & Robert F. Engle & Loriano Mancini, 2008. "A GARCH Option Pricing Model with Filtered Historical Simulation," Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1223-1258, May.
    25. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    GARCH models; Meixner distribution; Esscher transform; option pricing;

    JEL classification:

    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:usg:econwp:2017:02. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Martina Flockerzi). General contact details of provider: http://edirc.repec.org/data/vwasgch.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.