IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v247y2015i3p820-830.html
   My bibliography  Save this article

Non-Gaussian GARCH option pricing models and their diffusion limits

Author

Listed:
  • Badescu, Alexandru
  • Elliott, Robert J.
  • Ortega, Juan-Pablo

Abstract

This paper investigates the weak convergence of general non-Gaussian GARCH models together with an application to the pricing of European style options determined using an extended Girsanov principle and a conditional Esscher transform as the pricing kernel candidates. Applying these changes of measure to asymmetric GARCH models sampled at increasing frequencies, we obtain two risk neutral families of processes which converge to different bivariate diffusions, which are no longer standard Hull–White stochastic volatility models. Regardless of the innovations used, the GARCH implied diffusion limit based on the Esscher transform can be obtained by applying the minimal martingale measure under the physical measure. However, we further show that for skewed GARCH driving noise, the risk neutral diffusion limit of the extended Girsanov principle exhibits a non-zero market price of volatility risk which is proportional to the market price of the equity risk, where the constant of proportionality depends on the skewness and kurtosis of the underlying distribution. Our theoretical results are further supported by numerical simulations and a calibration exercise to observed market quotes.

Suggested Citation

  • Badescu, Alexandru & Elliott, Robert J. & Ortega, Juan-Pablo, 2015. "Non-Gaussian GARCH option pricing models and their diffusion limits," European Journal of Operational Research, Elsevier, vol. 247(3), pages 820-830.
  • Handle: RePEc:eee:ejores:v:247:y:2015:i:3:p:820-830
    DOI: 10.1016/j.ejor.2015.06.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715005792
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.06.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christophe Chorro & Dominique Guegan & Florian Ielpo, 2009. "Martingalized historical approach for option pricing," Documents de travail du Centre d'Economie de la Sorbonne 09021, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    2. J.L. Prigent & O. Scaillet, 2000. "Weak Convergence of Hedging Strategies of Contingent Claims," THEMA Working Papers 2000-50, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    3. Duan, Jin-Chuan, 1997. "Augmented GARCH (p,q) process and its diffusion limit," Journal of Econometrics, Elsevier, vol. 79(1), pages 97-127, July.
    4. Vicky Henderson, 2005. "Analytical Comparisons Of Option Prices In Stochastic Volatility Models," Mathematical Finance, Wiley Blackwell, vol. 15(1), pages 49-59, January.
    5. Monfort, Alain & Pegoraro, Fulvio, 2012. "Asset pricing with Second-Order Esscher Transforms," Journal of Banking & Finance, Elsevier, vol. 36(6), pages 1678-1687.
    6. Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
    7. Christophe Chorro & Dominique Gu�gan & Florian Ielpo, 2012. "Option pricing for GARCH-type models with generalized hyperbolic innovations," Quantitative Finance, Taylor & Francis Journals, vol. 12(7), pages 1079-1094, April.
    8. Peter Christoffersen & Steven Heston & Kris Jacobs, 2013. "Capturing Option Anomalies with a Variance-Dependent Pricing Kernel," The Review of Financial Studies, Society for Financial Studies, vol. 26(8), pages 1963-2006.
    9. Jin‐Chuan Duan & Peter Ritchken & Zhiqiang Sun, 2006. "Approximating Garch‐Jump Models, Jump‐Diffusion Processes, And Option Pricing," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 21-52, January.
    10. Peter Christoffersen & Redouane Elkamhi & Bruno Feunou & Kris Jacobs, 2010. "Option Valuation with Conditional Heteroskedasticity and Nonnormality," The Review of Financial Studies, Society for Financial Studies, vol. 23(5), pages 2139-2183.
    11. Menn, Christian & Rachev, Svetlozar T., 2005. "A GARCH option pricing model with [alpha]-stable innovations," European Journal of Operational Research, Elsevier, vol. 163(1), pages 201-209, May.
    12. Badescu Alex & Kulperger Reg & Lazar Emese, 2008. "Option Valuation with Normal Mixture GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(2), pages 1-42, May.
    13. Fabio Fornari & Antonio Mele, 1997. "Weak convergence and distributional assumptions for a general class of nonliner arch models," Econometric Reviews, Taylor & Francis Journals, vol. 16(2), pages 205-227.
    14. Stentoft, Lars, 2011. "American option pricing with discrete and continuous time models: An empirical comparison," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 880-902.
    15. Robert J. Elliott & Dilip B. Madan, 1998. "A Discrete Time Equivalent Martingale Measure," Mathematical Finance, Wiley Blackwell, vol. 8(2), pages 127-152, April.
    16. Jin-Chuan Duan & Yazhen Wang & Jian Zou, 2009. "Convergence Speed Of Garch Option Price To Diffusion Option Price," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 12(03), pages 359-391.
    17. Heston, Steven L & Nandi, Saikat, 2000. "A Closed-Form GARCH Option Valuation Model," The Review of Financial Studies, Society for Financial Studies, vol. 13(3), pages 585-625.
    18. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    19. Lars Stentoft, 2008. "American Option Pricing Using GARCH Models and the Normal Inverse Gaussian Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 540-582, Fall.
    20. Corradi, Valentina, 2000. "Reconsidering the continuous time limit of the GARCH(1, 1) process," Journal of Econometrics, Elsevier, vol. 96(1), pages 145-153, May.
    21. David Hobson, 2004. "STOCHASTIC VOLATILITY MODELS, CORRELATION, AND THE q‐OPTIMAL MEASURE," Mathematical Finance, Wiley Blackwell, vol. 14(4), pages 537-556, October.
    22. Badescu, Alexandru M. & Kulperger, Reg J., 2008. "GARCH option pricing: A semiparametric approach," Insurance: Mathematics and Economics, Elsevier, vol. 43(1), pages 69-84, August.
    23. Carol Alexandra & Emese Lazar, 2005. "On The Continuous Limit of GARCH," ICMA Centre Discussion Papers in Finance icma-dp2005-13, Henley Business School, University of Reading.
    24. Jin‐Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32, January.
    25. Christoffersen, Peter & Dorion, Christian & Jacobs, Kris & Wang, Yintian, 2010. "Volatility Components, Affine Restrictions, and Nonnormal Innovations," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(4), pages 483-502.
    26. Jin-Chuan Duan & Jean-Guy Simonato, 1998. "Empirical Martingale Simulation for Asset Prices," Management Science, INFORMS, vol. 44(9), pages 1218-1233, September.
    27. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    28. Alexandru Badescu & Robert J. Elliott & Reg Kulperger & Jarkko Miettinen & Tak Kuen Siu, 2011. "A Comparison Of Pricing Kernels For Garch Option Pricing With Generalized Hyperbolic Distributions," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 14(05), pages 669-708.
    29. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Badescu, Alexandru & Cui, Zhenyu & Ortega, Juan-Pablo, 2016. "A note on the Wang transform for stochastic volatility pricing models," Finance Research Letters, Elsevier, vol. 19(C), pages 189-196.
    2. Escobar-Anel, Marcos & Rastegari, Javad & Stentoft, Lars, 2021. "Option pricing with conditional GARCH models," European Journal of Operational Research, Elsevier, vol. 289(1), pages 350-363.
    3. Ballestra, Luca Vincenzo & D’Innocenzo, Enzo & Guizzardi, Andrea, 2024. "A new bivariate approach for modeling the interaction between stock volatility and interest rate: An application to S&P500 returns and options," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1185-1194.
    4. Matthieu Garcin & Clément Goulet, 2015. "Non-parameteric news impact curve: a variational approach," Documents de travail du Centre d'Economie de la Sorbonne 15086r, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Jul 2016.
    5. Escobar-Anel, Marcos & Rastegari, Javad & Stentoft, Lars, 2023. "Covariance dependent kernels, a Q-affine GARCH for multi-asset option pricing," International Review of Financial Analysis, Elsevier, vol. 87(C).
    6. Sharif Mozumder & Bakhtear Talukdar & M. Humayun Kabir & Bingxin Li, 2024. "Non-linear volatility with normal inverse Gaussian innovations: ad-hoc analytic option pricing," Review of Quantitative Finance and Accounting, Springer, vol. 62(1), pages 97-133, January.
    7. Matthieu Garcin & Clément Goulet, 2015. "Non-parameteric news impact curve: a variational approach," Documents de travail du Centre d'Economie de la Sorbonne 15086rr, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Feb 2017.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandru Badescu & Robert J. Elliott & Juan-Pablo Ortega, 2012. "Quadratic hedging schemes for non-Gaussian GARCH models," Papers 1209.5976, arXiv.org, revised Dec 2013.
    2. Badescu, Alexandru & Elliott, Robert J. & Ortega, Juan-Pablo, 2014. "Quadratic hedging schemes for non-Gaussian GARCH models," Journal of Economic Dynamics and Control, Elsevier, vol. 42(C), pages 13-32.
    3. Matthias R. Fengler & Alexander Melnikov, 2018. "GARCH option pricing models with Meixner innovations," Review of Derivatives Research, Springer, vol. 21(3), pages 277-305, October.
    4. Badescu, Alexandru & Cui, Zhenyu & Ortega, Juan-Pablo, 2016. "A note on the Wang transform for stochastic volatility pricing models," Finance Research Letters, Elsevier, vol. 19(C), pages 189-196.
    5. Stentoft, Lars, 2011. "American option pricing with discrete and continuous time models: An empirical comparison," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 880-902.
    6. Zhang, Yuanyuan & Zhang, Qian & Wang, Zerong & Wang, Qi, 2024. "Option valuation via nonaffine dynamics with realized volatility," Journal of Empirical Finance, Elsevier, vol. 77(C).
    7. Rombouts, Jeroen V.K. & Stentoft, Lars, 2015. "Option pricing with asymmetric heteroskedastic normal mixture models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 635-650.
    8. Lars Stentoft, 2013. "American option pricing using simulation with an application to the GARCH model," Chapters, in: Adrian R. Bell & Chris Brooks & Marcel Prokopczuk (ed.), Handbook of Research Methods and Applications in Empirical Finance, chapter 5, pages 114-147, Edward Elgar Publishing.
    9. Liu, Yanxin & Li, Johnny Siu-Hang & Ng, Andrew Cheuk-Yin, 2015. "Option pricing under GARCH models with Hansen's skewed-t distributed innovations," The North American Journal of Economics and Finance, Elsevier, vol. 31(C), pages 108-125.
    10. Rombouts, Jeroen V.K. & Stentoft, Lars, 2011. "Multivariate option pricing with time varying volatility and correlations," Journal of Banking & Finance, Elsevier, vol. 35(9), pages 2267-2281, September.
    11. Stentoft, Lars, 2005. "Pricing American options when the underlying asset follows GARCH processes," Journal of Empirical Finance, Elsevier, vol. 12(4), pages 576-611, September.
    12. Buccheri, Giuseppe & Corsi, Fulvio & Flandoli, Franco & Livieri, Giulia, 2021. "The continuous-time limit of score-driven volatility models," Journal of Econometrics, Elsevier, vol. 221(2), pages 655-675.
    13. F. Fornari & A. Mele, 1998. "ARCH Models and Option Pricing : The Continuous Time Connection," THEMA Working Papers 98-30, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    14. Rachid Belhachemi, 2024. "Option Valuation with Conditional Heteroskedastic Hidden Truncation Models," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2585-2601, June.
    15. Byun, Suk Joon & Jeon, Byoung Hyun & Min, Byungsun & Yoon, Sun-Joong, 2015. "The role of the variance premium in Jump-GARCH option pricing models," Journal of Banking & Finance, Elsevier, vol. 59(C), pages 38-56.
    16. Yu-Hua Zeng & Shou-Lei Wang & Yu-Fei Yang, 2014. "Calibration of the Volatility in Option Pricing Using the Total Variation Regularization," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-9, March.
    17. Rombouts, Jeroen V.K. & Stentoft, Lars, 2014. "Bayesian option pricing using mixed normal heteroskedasticity models," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 588-605.
    18. Escobar-Anel, Marcos & Rastegari, Javad & Stentoft, Lars, 2021. "Option pricing with conditional GARCH models," European Journal of Operational Research, Elsevier, vol. 289(1), pages 350-363.
    19. Badescu Alex & Kulperger Reg & Lazar Emese, 2008. "Option Valuation with Normal Mixture GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(2), pages 1-42, May.
    20. Peter Christoffersen & Kris Jacobs, 2004. "Which GARCH Model for Option Valuation?," Management Science, INFORMS, vol. 50(9), pages 1204-1221, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:247:y:2015:i:3:p:820-830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.