IDEAS home Printed from https://ideas.repec.org/p/ema/worpap/2000-50.html
   My bibliography  Save this paper

Weak Convergence of Hedging Strategies of Contingent Claims

Author

Listed:
  • J.L. Prigent
  • O. Scaillet

Abstract

This paper presents results on the convergence for hedging strategies in the setting of incomplete financial markets. We examine the convergence of the so-called locally risk-minimizing strategy. It is proved that such a choice for the trading strategy, when perfect hedging of contingent claims is infeasible, is robust under weak convergence. Several fundamental examples, such as trinomial trees and stochastic volatility models, extracted from the financial modeling literature illustrate this property for both deterministic and random time intervals shrinking to zero.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • J.L. Prigent & O. Scaillet, 2000. "Weak Convergence of Hedging Strategies of Contingent Claims," THEMA Working Papers 2000-50, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
  • Handle: RePEc:ema:worpap:2000-50
    as

    Download full text from publisher

    File URL: http://www.u-cergy.fr/IMG/documents//2000-50Prigent.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jean -Luc Prigent & Olivier Renault & Olivier Scaillet, 1999. "An Autoregressive Conditional Binomial Option Pricing Model," Working Papers 99-65, Center for Research in Economics and Statistics.
    2. Prigent, Jean-Luc & Renault, Olivier & Scaillet, Olivier, 2004. "Option pricing with discrete rebalancing," Journal of Empirical Finance, Elsevier, vol. 11(1), pages 133-161, January.
    3. Duffie, Darrell & Lando, David, 2001. "Term Structures of Credit Spreads with Incomplete Accounting Information," Econometrica, Econometric Society, vol. 69(3), pages 633-664, May.
    4. Schweizer, Martin, 1992. "Martingale densities for general asset prices," Journal of Mathematical Economics, Elsevier, vol. 21(4), pages 363-378.
    5. Schweizer, Martin, 1991. "Option hedging for semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 37(2), pages 339-363, April.
    6. David Heath & Eckhard Platen & Martin Schweizer, 2001. "A Comparison of Two Quadratic Approaches to Hedging in Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 11(4), pages 385-413.
    7. O. Scaillet & J.-L. Prigent & J.-P. Lesne, 2000. "Convergence of discrete time option pricing models under stochastic interest rates," Finance and Stochastics, Springer, vol. 4(1), pages 81-93.
    8. repec:crs:wpaper:9961 is not listed on IDEAS
    9. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Badescu, Alexandru & Elliott, Robert J. & Ortega, Juan-Pablo, 2014. "Quadratic hedging schemes for non-Gaussian GARCH models," Journal of Economic Dynamics and Control, Elsevier, vol. 42(C), pages 13-32.
    2. Badescu, Alexandru & Elliott, Robert J. & Ortega, Juan-Pablo, 2015. "Non-Gaussian GARCH option pricing models and their diffusion limits," European Journal of Operational Research, Elsevier, vol. 247(3), pages 820-830.
    3. Alexandru Badescu & Robert J. Elliott & Juan-Pablo Ortega, 2012. "Quadratic hedging schemes for non-Gaussian GARCH models," Papers 1209.5976, arXiv.org, revised Dec 2013.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ema:worpap:2000-50. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Stefania Marcassa). General contact details of provider: http://edirc.repec.org/data/themafr.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.