IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Option pricing and spikes in volatility: theoretical and empirical analysis

  • Paola Zerilli

    (University of York)

This paper considers a financial market where the asset prices and the corresponding volatility are driven by a multidimensional mixture of Wiener shocks and Poisson jumps. While implied volatility is characterized by spikes, the existing models rely on the restrictive assumption of positive jumps in volatility. To overcome this inadequacy, the present paper introduces normally distributed jumps in the logvariance process. The model proposed is able to mimic empirically observed spikes in volatility and, consequently, improves upon the existing literature as it replicates the main features of both the stock return series and the corresponding option prices. After estimating the stock returns via the Efficient Method of Moments, the expression for the valuation of a plain vanilla European call option is derived, using the no-arbitrage argument. S&P500 option prices are used to assess quantitatively the empirical performance of the innovative features of the proposed model. The estimates indicate that spikes in volatility introduce a significant improvement in option pricing and provide evidence for stochastic jump risk premia.

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://repec.org/mmfc05/paper76.pdf
Download Restriction: no

Paper provided by Money Macro and Finance Research Group in its series Money Macro and Finance (MMF) Research Group Conference 2005 with number 76.

as
in new window

Length:
Date of creation: 03 Sep 2005
Date of revision:
Handle: RePEc:mmf:mmfc05:76
Contact details of provider: Web page: http://www.essex.ac.uk/afm/mmf/index.html

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Schweizer, Martin, 1992. "Martingale densities for general asset prices," Journal of Mathematical Economics, Elsevier, vol. 21(4), pages 363-378.
  2. Amin, Kaushik I & Ng, Victor K, 1993. " Option Valuation with Systematic Stochastic Volatility," Journal of Finance, American Finance Association, vol. 48(3), pages 881-910, July.
  3. Schweizer, Martin, 1991. "Option hedging for semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 37(2), pages 339-363, April.
  4. Huyěn Pham & Nizar Touzi, 1996. "Equilibrium State Prices In A Stochastic Volatility Model," Mathematical Finance, Wiley Blackwell, vol. 6(2), pages 215-236.
  5. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
  6. Geman, Hélyette & Carr, Peter & Madan, Dilip B. & Yor, Marc, 2003. "Stochastic Volatility for Levy Processes," Economics Papers from University Paris Dauphine 123456789/1392, Paris Dauphine University.
  7. Mikhail Chernov & A. Ronald Gallant & Eric Ghysels & George Tauchen, 2002. "Alternative Models for Stock Price Dynamics," CIRANO Working Papers 2002s-58, CIRANO.
  8. Charles J. Corrado & Tie Su, 1996. "Skewness And Kurtosis In S&P 500 Index Returns Implied By Option Prices," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 19(2), pages 175-192, 06.
  9. Gallant, Ronald & Tauchen, George, 1989. "Seminonparametric Estimation of Conditionally Constrained Heterogeneous Processes: Asset Pricing Applications," Econometrica, Econometric Society, vol. 57(5), pages 1091-1120, September.
  10. McDonald, James B. & Newey, Whitney K., 1988. "Partially Adaptive Estimation of Regression Models via the Generalized T Distribution," Econometric Theory, Cambridge University Press, vol. 4(03), pages 428-457, December.
  11. Panayiotis Theodossiou, 1998. "Financial Data and the Skewed Generalized T Distribution," Management Science, INFORMS, vol. 44(12-Part-1), pages 1650-1661, December.
  12. Chacko, George & Viceira, Luis M., 2003. "Spectral GMM estimation of continuous-time processes," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 259-292.
  13. Black, Fischer & Scholes, Myron S, 1972. "The Valuation of Option Contracts and a Test of Market Efficiency," Journal of Finance, American Finance Association, vol. 27(2), pages 399-417, May.
  14. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range-Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, 06.
  15. Jérôme Detemple & Weidong Tian, 2002. "The Valuation of American Options for a Class of Diffusion Processes," Management Science, INFORMS, vol. 48(7), pages 917-937, July.
  16. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
  17. Yacine Ait-Sahalia & Andrew W. Lo, 1995. "Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices," NBER Working Papers 5351, National Bureau of Economic Research, Inc.
  18. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
  19. J. Michael Harrison & Stanley R. Pliska, 1981. "Martingales and Stochastic Integrals in the Theory of Continous Trading," Discussion Papers 454, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
  20. Wiggins, James B., 1987. "Option values under stochastic volatility: Theory and empirical estimates," Journal of Financial Economics, Elsevier, vol. 19(2), pages 351-372, December.
  21. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-43.
  22. Tauchen, George E. & Gallant, A. Ronald, 1995. "Which Moments to Match," Working Papers 95-20, Duke University, Department of Economics.
  23. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
  24. Scott, Louis O., 1987. "Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(04), pages 419-438, December.
  25. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-52.
  26. S. James Press, 1967. "A Compound Events Model for Security Prices," The Journal of Business, University of Chicago Press, vol. 40, pages 317.
  27. Jarrow, Robert & Rudd, Andrew, 1982. "Approximate option valuation for arbitrary stochastic processes," Journal of Financial Economics, Elsevier, vol. 10(3), pages 347-369, November.
  28. Chesney, Marc & Scott, Louis, 1989. "Pricing European Currency Options: A Comparison of the Modified Black-Scholes Model and a Random Variance Model," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 24(03), pages 267-284, September.
  29. Ronald Gallant, A. & Tauchen, George, 1999. "The relative efficiency of method of moments estimators1," Journal of Econometrics, Elsevier, vol. 92(1), pages 149-172, September.
  30. Creedy, John & Martin, Vance L, 1994. "A Model of the Distribution of Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 56(1), pages 67-76, February.
  31. Chernov, Mikhail & Ghysels, Eric, 2000. "A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation," Journal of Financial Economics, Elsevier, vol. 56(3), pages 407-458, June.
  32. Mark Broadie & Mikhail Chernov & Michael Johannes, 2007. "Model Specification and Risk Premia: Evidence from Futures Options," Journal of Finance, American Finance Association, vol. 62(3), pages 1453-1490, 06.
  33. Eraker, Bjorn, 2002. "Do Stock Prices and Volatility Jump? Reconciling Evidence from Spot and Option Prices," Working Papers 02-23, Duke University, Department of Economics.
  34. Marc Romano & Nizar Touzi, 1997. "Contingent Claims and Market Completeness in a Stochastic Volatility Model," Mathematical Finance, Wiley Blackwell, vol. 7(4), pages 399-412.
  35. repec:cup:cbooks:9780521335614 is not listed on IDEAS
  36. Gallant, A Ronald & Nychka, Douglas W, 1987. "Semi-nonparametric Maximum Likelihood Estimation," Econometrica, Econometric Society, vol. 55(2), pages 363-90, March.
  37. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
  38. Melino, Angelo & Turnbull, Stuart M., 1990. "Pricing foreign currency options with stochastic volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 239-265.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:mmf:mmfc05:76. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.