IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v4y1988i03p428-457_01.html
   My bibliography  Save this article

Partially Adaptive Estimation of Regression Models via the Generalized T Distribution

Author

Listed:
  • McDonald, James B.
  • Newey, Whitney K.

Abstract

This paper considers M-estimators of regression parameters that make use of a generalized functional form for the disturbance distribution. The family of distributions considered is the generalized t (GT), which includes the power exponential or Box-Tiao, normal, Laplace, and t distributions as special cases. The corresponding influence function is bounded and redescending for finite “degrees of freedom.” The regression estimators considered are those that maximize the GT quasi-likelihood, as well as one-step versions. Estimators of the parameters of the GT distribution and the effect of such estimates on the asymptotic efficiency of the regression estimates are discussed. We give a minimum-distance interpretation of the choice of GT parameter estimate that minimizes the asymptotic variance of the regression parameters.

Suggested Citation

  • McDonald, James B. & Newey, Whitney K., 1988. "Partially Adaptive Estimation of Regression Models via the Generalized T Distribution," Econometric Theory, Cambridge University Press, vol. 4(3), pages 428-457, December.
  • Handle: RePEc:cup:etheor:v:4:y:1988:i:03:p:428-457_01
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466600013384/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:4:y:1988:i:03:p:428-457_01. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.