IDEAS home Printed from https://ideas.repec.org/a/eee/dyncon/v42y2014icp13-32.html
   My bibliography  Save this article

Quadratic hedging schemes for non-Gaussian GARCH models

Author

Listed:
  • Badescu, Alexandru
  • Elliott, Robert J.
  • Ortega, Juan-Pablo

Abstract

We propose different schemes for option hedging when asset returns are modeled using a general class of GARCH models. More specifically, we implement local risk minimization and a minimum variance hedge approximation based on an extended Girsanov principle that generalizes Duan׳s (1995) delta hedge. Since the minimal martingale measure fails to produce a probability measure in this setting, we construct local risk minimization hedging strategies with respect to a pricing kernel. These approaches are investigated in the context of non-Gaussian driven models. Furthermore, we analyze these methods for non-Gaussian GARCH diffusion limit processes and link them to the corresponding discrete time counterparts. A detailed numerical analysis based on S&P 500 European call options is provided to assess the empirical performance of the proposed schemes. We also test the sensitivity of the hedging strategies with respect to the risk neutral measure used by recomputing some of our results with an exponential affine pricing kernel.

Suggested Citation

  • Badescu, Alexandru & Elliott, Robert J. & Ortega, Juan-Pablo, 2014. "Quadratic hedging schemes for non-Gaussian GARCH models," Journal of Economic Dynamics and Control, Elsevier, vol. 42(C), pages 13-32.
  • Handle: RePEc:eee:dyncon:v:42:y:2014:i:c:p:13-32
    DOI: 10.1016/j.jedc.2014.03.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0165188914000608
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J.L. Prigent & O. Scaillet, 2000. "Weak Convergence of Hedging Strategies of Contingent Claims," THEMA Working Papers 2000-50, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    2. Duan, Jin-Chuan, 1997. "Augmented GARCH (p,q) process and its diffusion limit," Journal of Econometrics, Elsevier, vol. 79(1), pages 97-127, July.
    3. Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
    4. Robert F. Engle & Joshua V. Rosenberg, 1995. "GARCH Gamma," NBER Working Papers 5128, National Bureau of Economic Research, Inc.
    5. Bates, David S., 2005. "Hedging the smirk," Finance Research Letters, Elsevier, vol. 2(4), pages 195-200, December.
    6. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. " Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    7. Alev{s} v{C}ern'y & Jan Kallsen, 2007. "On the Structure of General Mean-Variance Hedging Strategies," Papers 0708.1715, arXiv.org, revised Jul 2017.
    8. Peter Christoffersen & Redouane Elkamhi & Bruno Feunou & Kris Jacobs, 2010. "Option Valuation with Conditional Heteroskedasticity and Nonnormality," Review of Financial Studies, Society for Financial Studies, vol. 23(5), pages 2139-2183.
    9. N. El Karoui & S. Peng & M. C. Quenez, 1997. "Backward Stochastic Differential Equations in Finance," Mathematical Finance, Wiley Blackwell, vol. 7(1), pages 1-71.
    10. Suleyman Basak & Georgy Chabakauri, 2012. "Dynamic Hedging in Incomplete Markets: A Simple Solution," Review of Financial Studies, Society for Financial Studies, vol. 25(6), pages 1845-1896.
    11. Jan Kallsen & Murad S. Taqqu, 1998. "Option Pricing in ARCH-type Models," Mathematical Finance, Wiley Blackwell, vol. 8(1), pages 13-26.
    12. Choi, Youngsoo, 2005. "An analytical approximation to the option formula for the GARCH model," International Review of Financial Analysis, Elsevier, vol. 14(2), pages 149-164.
    13. Robert J. Elliott & Dilip B. Madan, 1998. "A Discrete Time Equivalent Martingale Measure," Mathematical Finance, Wiley Blackwell, vol. 8(2), pages 127-152.
    14. Heston, Steven L & Nandi, Saikat, 2000. "A Closed-Form GARCH Option Valuation Model," Review of Financial Studies, Society for Financial Studies, vol. 13(3), pages 585-625.
    15. Alexander, Carol & Nogueira, Leonardo M., 2007. "Model-free hedge ratios and scale-invariant models," Journal of Banking & Finance, Elsevier, vol. 31(6), pages 1839-1861, June.
    16. Carol Alexander & Leonardo Nogueira, 2007. "Model-free price hedge ratios for homogeneous claims on tradable assets," Quantitative Finance, Taylor & Francis Journals, vol. 7(5), pages 473-479.
    17. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    18. Lars Stentoft, 2008. "American Option Pricing Using GARCH Models and the Normal Inverse Gaussian Distribution," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 6(4), pages 540-582, Fall.
    19. Corradi, Valentina, 2000. "Reconsidering the continuous time limit of the GARCH(1, 1) process," Journal of Econometrics, Elsevier, vol. 96(1), pages 145-153, May.
    20. Juan-Pablo Ortega, 2012. "GARCH options via local risk minimization," Quantitative Finance, Taylor & Francis Journals, vol. 12(7), pages 1095-1110, May.
    21. Rolf Poulsen & Klaus Reiner Schenk-Hoppe & Christian-Oliver Ewald, 2009. "Risk minimization in stochastic volatility models: model risk and empirical performance," Quantitative Finance, Taylor & Francis Journals, vol. 9(6), pages 693-704.
    22. Boyle, Phelim P. & Emanuel, David, 1980. "Discretely adjusted option hedges," Journal of Financial Economics, Elsevier, vol. 8(3), pages 259-282, September.
    23. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    24. Bernard Dumas & Jeff Fleming & Robert E. Whaley, 1998. "Implied Volatility Functions: Empirical Tests," Journal of Finance, American Finance Association, vol. 53(6), pages 2059-2106, December.
    25. Jin-Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32.
    26. Ales Černý & Jan Kallsen, 2008. "A Counterexample Concerning The Variance-Optimal Martingale Measure," Mathematical Finance, Wiley Blackwell, vol. 18(2), pages 305-316.
    27. Jin-Chuan Duan & Jean-Guy Simonato, 1998. "Empirical Martingale Simulation for Asset Prices," Management Science, INFORMS, vol. 44(9), pages 1218-1233, September.
    28. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    29. repec:wsi:ijtafx:v:14:y:2011:i:05:n:s0219024911006401 is not listed on IDEAS
    30. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    GARCH models; Local risk minimization; Martingale measure; Bivariate diffusion limit; Minimum variance hedge;

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:dyncon:v:42:y:2014:i:c:p:13-32. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/jedc .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.