IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v321y2025i3p1021-1035.html
   My bibliography  Save this article

A new lattice approach for risk-minimization hedging under generalized autoregressive conditional heteroskedasticity models

Author

Listed:
  • Ma, Junmei
  • Wang, Chen
  • Xu, Wei

Abstract

This paper explores the calculation of risk-minimization hedging strategies, specifically local and global risk minimization strategies for contingent claims under affine and non-affine GARCH models with the known closed forms of its first four moments across times under the physical measure. A unified and efficient willow tree method is introduced for various GARCH models. Unlike methods that provide option values and hedging ratios solely at the inception time, the proposed willow tree method generates a comprehensive table of option values and hedging ratios at each discrete time step across possible asset prices. Additionally, the method showcases robust performance in hedging at lower frequencies than the underlying asset’s modeling frequency (e.g., weekly or monthly hedging using a daily GARCH model). Lastly, the willow tree method outperforms the Monte Carlo method, offering greater efficiency, accuracy, and flexibility in solving risk-minimization hedging problems.

Suggested Citation

  • Ma, Junmei & Wang, Chen & Xu, Wei, 2025. "A new lattice approach for risk-minimization hedging under generalized autoregressive conditional heteroskedasticity models," European Journal of Operational Research, Elsevier, vol. 321(3), pages 1021-1035.
  • Handle: RePEc:eee:ejores:v:321:y:2025:i:3:p:1021-1035
    DOI: 10.1016/j.ejor.2024.10.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724007550
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.10.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martin Schweizer, 1995. "Variance-Optimal Hedging in Discrete Time," Mathematics of Operations Research, INFORMS, vol. 20(1), pages 1-32, February.
    2. Maciej Augustyniak & Frédéric Godin & Clarence Simard, 2017. "Assessing the effectiveness of local and global quadratic hedging under GARCH models," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1305-1318, September.
    3. Christoffersen, Peter & Jacobs, Kris & Ornthanalai, Chayawat & Wang, Yintian, 2008. "Option valuation with long-run and short-run volatility components," Journal of Financial Economics, Elsevier, vol. 90(3), pages 272-297, December.
    4. Jean-Guy Simonato, 2016. "A Simplified Quadrature Approach for Computing Bermudan Option Prices," International Review of Finance, International Review of Finance Ltd., vol. 16(4), pages 647-658, December.
    5. Badescu, Alexandru & Elliott, Robert J. & Ortega, Juan-Pablo, 2014. "Quadratic hedging schemes for non-Gaussian GARCH models," Journal of Economic Dynamics and Control, Elsevier, vol. 42(C), pages 13-32.
    6. René Garcia & Èric Renault, 1998. "A Note on Hedging in ARCH and Stochastic Volatility Option Pricing Models," Mathematical Finance, Wiley Blackwell, vol. 8(2), pages 153-161, April.
    7. Duan, Jin-Chuan & Simonato, Jean-Guy, 2001. "American option pricing under GARCH by a Markov chain approximation," Journal of Economic Dynamics and Control, Elsevier, vol. 25(11), pages 1689-1718, November.
    8. Alexander, Carol & Lazar, Emese & Stanescu, Silvia, 2021. "Analytic moments for GJR-GARCH (1, 1) processes," International Journal of Forecasting, Elsevier, vol. 37(1), pages 105-124.
    9. Maciej Augustyniak & Alexandru Badescu & Zhiyu Guo, 2021. "Lattice-based hedging schemes under GARCH models," Quantitative Finance, Taylor & Francis Journals, vol. 21(5), pages 697-710, May.
    10. Christoffersen, Peter & Dorion, Christian & Jacobs, Kris & Wang, Yintian, 2010. "Volatility Components, Affine Restrictions, and Nonnormal Innovations," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(4), pages 483-502.
    11. Alexandru Badescu & Zhenyu Cui & Juan-Pablo Ortega, 2019. "Closed-form variance swap prices under general affine GARCH models and their continuous-time limits," Annals of Operations Research, Springer, vol. 282(1), pages 27-57, November.
    12. Peter Ritchken & Rob Trevor, 1999. "Pricing Options under Generalized GARCH and Stochastic Volatility Processes," Journal of Finance, American Finance Association, vol. 54(1), pages 377-402, February.
    13. Wei Xu & Zhiwu Hong & Chenxiang Qin, 2013. "A new sampling strategy willow tree method with application to path-dependent option pricing," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 861-872, May.
    14. Heston, Steven L & Nandi, Saikat, 2000. "A Closed-Form GARCH Option Valuation Model," The Review of Financial Studies, Society for Financial Studies, vol. 13(3), pages 585-625.
    15. Schweizer, Martin, 1991. "Option hedging for semimartingales," Stochastic Processes and their Applications, Elsevier, vol. 37(2), pages 339-363, April.
    16. Michèle Breton & Javier de Frutos, 2010. "Option Pricing Under GARCH Processes Using PDE Methods," Operations Research, INFORMS, vol. 58(4-part-2), pages 1148-1157, August.
    17. Juan-Pablo Ortega, 2012. "GARCH options via local risk minimization," Quantitative Finance, Taylor & Francis Journals, vol. 12(7), pages 1095-1110, May.
    18. Maciej Augustyniak & Alexandru Badescu, 2021. "On the computation of hedging strategies in affine GARCH models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(5), pages 710-735, May.
    19. Jin‐Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32, January.
    20. Yuh-Dauh Lyuu & Chi-Ning Wu, 2005. "On accurate and provably efficient GARCH option pricing algorithms," Quantitative Finance, Taylor & Francis Journals, vol. 5(2), pages 181-198.
    21. Alexandru Badescu & Zhenyu Cui & Juan-Pablo Ortega, 2017. "Non-affine GARCH Option Pricing Models, Variance-Dependent Kernels, and Diffusion Limits," Journal of Financial Econometrics, Oxford University Press, vol. 15(4), pages 602-648.
    22. Bruno R�millard & Sylvain Rubenthaler, 2013. "Optimal hedging in discrete time," Quantitative Finance, Taylor & Francis Journals, vol. 13(6), pages 819-825, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Augustyniak, Maciej & Badescu, Alexandru & Bégin, Jean-François, 2023. "A discrete-time hedging framework with multiple factors and fat tails: On what matters," Journal of Econometrics, Elsevier, vol. 232(2), pages 416-444.
    2. Wang, Xingchun & Zhang, Han, 2022. "Pricing basket spread options with default risk under Heston–Nandi GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    3. Maciej Augustyniak & Alexandru Badescu, 2021. "On the computation of hedging strategies in affine GARCH models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(5), pages 710-735, May.
    4. Augustyniak, Maciej & Godin, Frédéric & Simard, Clarence, 2019. "A profitable modification to global quadratic hedging," Journal of Economic Dynamics and Control, Elsevier, vol. 104(C), pages 111-131.
    5. Maciej Augustyniak & Frédéric Godin & Clarence Simard, 2017. "Assessing the effectiveness of local and global quadratic hedging under GARCH models," Quantitative Finance, Taylor & Francis Journals, vol. 17(9), pages 1305-1318, September.
    6. Augustyniak, Maciej & Badescu, Alexandru & Bégin, Jean-François & Jayaraman, Sarath Kumar, 2025. "A general option pricing framework for affine fractionally integrated models," Journal of Banking & Finance, Elsevier, vol. 171(C).
    7. Zhang, Yuanyuan & Zhang, Qian & Wang, Zerong & Wang, Qi, 2024. "Option valuation via nonaffine dynamics with realized volatility," Journal of Empirical Finance, Elsevier, vol. 77(C).
    8. Papantonis, Ioannis, 2016. "Volatility risk premium implications of GARCH option pricing models," Economic Modelling, Elsevier, vol. 58(C), pages 104-115.
    9. Hatem Ben-Ameur & Michèle Breton & Juan-Manuel Martinez, 2009. "Dynamic Programming Approach for Valuing Options in the GARCH Model," Management Science, INFORMS, vol. 55(2), pages 252-266, February.
    10. Michèle Breton & Javier de Frutos, 2010. "Option Pricing Under GARCH Processes Using PDE Methods," Operations Research, INFORMS, vol. 58(4-part-2), pages 1148-1157, August.
    11. Stentoft, Lars, 2005. "Pricing American options when the underlying asset follows GARCH processes," Journal of Empirical Finance, Elsevier, vol. 12(4), pages 576-611, September.
    12. Christoffersen, Peter & Heston, Steven & Jacobs, Kris, 2010. "Option Anomalies and the Pricing Kernel," Working Papers 11-17, University of Pennsylvania, Wharton School, Weiss Center.
    13. Lars Stentoft, 2008. "American Option Pricing Using GARCH Models and the Normal Inverse Gaussian Distribution," Journal of Financial Econometrics, Oxford University Press, vol. 6(4), pages 540-582, Fall.
    14. Rachid Belhachemi, 2024. "Option Valuation with Conditional Heteroskedastic Hidden Truncation Models," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2585-2601, June.
    15. Gondzio, Jacek & Kouwenberg, Roy & Vorst, Ton, 2003. "Hedging options under transaction costs and stochastic volatility," Journal of Economic Dynamics and Control, Elsevier, vol. 27(6), pages 1045-1068, April.
    16. Xingchun Wang & Han Zhang, 2024. "Pricing Fade-in Options Under GARCH-Jump Processes," Computational Economics, Springer;Society for Computational Economics, vol. 64(4), pages 2563-2584, October.
    17. Carbonneau, Alexandre, 2021. "Deep hedging of long-term financial derivatives," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 327-340.
    18. Rombouts, Jeroen V.K. & Stentoft, Lars, 2015. "Option pricing with asymmetric heteroskedastic normal mixture models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 635-650.
    19. Yu-Hua Zeng & Shou-Lei Wang & Yu-Fei Yang, 2014. "Calibration of the Volatility in Option Pricing Using the Total Variation Regularization," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-9, March.
    20. Wang, Qi & Wang, Zerong, 2020. "VIX valuation and its futures pricing through a generalized affine realized volatility model with hidden components and jump," Journal of Banking & Finance, Elsevier, vol. 116(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:321:y:2025:i:3:p:1021-1035. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.