IDEAS home Printed from https://ideas.repec.org/a/eee/finlet/v19y2016icp189-196.html
   My bibliography  Save this article

A note on the Wang transform for stochastic volatility pricing models

Author

Listed:
  • Badescu, Alexandru
  • Cui, Zhenyu
  • Ortega, Juan-Pablo

Abstract

In this paper we study a conditional version of the Wang transform in the context of discrete GARCH models and their diffusion limits. Our first contribution shows that the conditional Wang transform and Duans generalized local risk-neutral valuation relationship based on equilibrium considerations, lead to the same GARCH option pricing model. We derive the weak limit of an asymmetric GARCH model risk-neutralized via Wang’s transform. The connection with stochastic volatility limits constructed using other standard pricing kernels, such as the conditional Esscher transform or the extended Girsanov principle, is further investigated by comparing the corresponding market prices of variance risk.

Suggested Citation

  • Badescu, Alexandru & Cui, Zhenyu & Ortega, Juan-Pablo, 2016. "A note on the Wang transform for stochastic volatility pricing models," Finance Research Letters, Elsevier, vol. 19(C), pages 189-196.
  • Handle: RePEc:eee:finlet:v:19:y:2016:i:c:p:189-196
    DOI: 10.1016/j.frl.2016.07.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1544612316301337
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duan, Jin-Chuan, 1997. "Augmented GARCH (p,q) process and its diffusion limit," Journal of Econometrics, Elsevier, vol. 79(1), pages 97-127, July.
    2. Lars Stentoft, 2008. "American Option Pricing Using GARCH Models and the Normal Inverse Gaussian Distribution," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 6(4), pages 540-582, Fall.
    3. Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
    4. Christophe Chorro & Dominique Guégan & Florian Ielpo, 2012. "Option pricing for GARCH-type models with generalized hyperbolic innovations," Quantitative Finance, Taylor & Francis Journals, vol. 12(7), pages 1079-1094, April.
    5. Kanniainen, Juho & Lin, Binghuan & Yang, Hanxue, 2014. "Estimating and using GARCH models with VIX data for option valuation," Journal of Banking & Finance, Elsevier, vol. 43(C), pages 200-211.
    6. Zhu, Ke & Ling, Shiqing, 2015. "Model-based pricing for financial derivatives," Journal of Econometrics, Elsevier, vol. 187(2), pages 447-457.
    7. Peter Christoffersen & Redouane Elkamhi & Bruno Feunou & Kris Jacobs, 2010. "Option Valuation with Conditional Heteroskedasticity and Nonnormality," Review of Financial Studies, Society for Financial Studies, vol. 23(5), pages 2139-2183.
    8. repec:hal:journl:halshs-00437927 is not listed on IDEAS
    9. Chorro, C. & Guégan, D. & Ielpo, F., 2010. "Martingalized historical approach for option pricing," Finance Research Letters, Elsevier, vol. 7(1), pages 24-28, March.
    10. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    11. David Hobson, 2004. "STOCHASTIC VOLATILITY MODELS, CORRELATION, AND THE "q"-OPTIMAL MEASURE," Mathematical Finance, Wiley Blackwell, vol. 14(4), pages 537-556.
    12. Badescu Alex & Kulperger Reg & Lazar Emese, 2008. "Option Valuation with Normal Mixture GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(2), pages 1-42, May.
    13. Jin-Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32.
    14. Jinji Hao & Jin E. Zhang, 2013. "GARCH Option Pricing Models, the CBOE VIX, and Variance Risk Premium," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 11(3), pages 556-580, June.
    15. Christoffersen, Peter & Dorion, Christian & Jacobs, Kris & Wang, Yintian, 2010. "Volatility Components, Affine Restrictions, and Nonnormal Innovations," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(4), pages 483-502.
    16. Jean-Guy Simonato & Lars Stentoft, 2015. "Which pricing approach for options under GARCH with non-normal innovations?," CREATES Research Papers 2015-32, Department of Economics and Business Economics, Aarhus University.
    17. Pelsser, Antoon, 2008. "On the Applicability of the Wang Transform for Pricing Financial Risks," ASTIN Bulletin: The Journal of the International Actuarial Association, Cambridge University Press, vol. 38(01), pages 171-181, May.
    18. Robert J. Elliott & Dilip B. Madan, 1998. "A Discrete Time Equivalent Martingale Measure," Mathematical Finance, Wiley Blackwell, vol. 8(2), pages 127-152.
    19. Christophe Ley & Gesine Reinert & Yves-Caoimhin Swan, 2014. "Approximate Computation of Expectations: the Canonical Stein Operator," Working Papers ECARES ECARES 2014-36, ULB -- Universite Libre de Bruxelles.
    20. Badescu, Alexandru & Elliott, Robert J. & Ortega, Juan-Pablo, 2015. "Non-Gaussian GARCH option pricing models and their diffusion limits," European Journal of Operational Research, Elsevier, vol. 247(3), pages 820-830.
    21. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:finlet:v:19:y:2016:i:c:p:189-196. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/locate/frl .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.