IDEAS home Printed from
   My bibliography  Save this paper

Risque de modèle de volatilité


  • Ali Alami
  • Éric Renault


The risk-return trade-off being the very substance of finance, volatility has always been an essential parameter for portfolio management. Moreover, the generalization of the use of derivatives has placed in the forefront the concept of volatility risk: i.e. the model risk generated by treating the volatility as a constant parameter, when it is in fact volatile. Hence the econometrician is asked for accurate measures and reliable forecasts of volatility, not only for pricing and hedging derivatives, but also more generally for portfolio management. The central thesis of this paper is that operational model-free methods of volatility forecasting do not exist any more than do arbitrage opportunities (free lunches) in financial markets. It is for this reason that there exists volatility model risk against which it is illusory to try to immunize. Several specific components of this model risk are analyzed. One will imply that the choice of a volatility model for a given financial application always confronts one with a risk-return trade-off on the model itself. L'arbitrage rendement - risque étant la substance de la finance, la volatilité a toujours été un paramètre essentiel pour la gestion de portefeuille. La généralisation de l'utilisation de produits dérivés a en outre mis sur le devant de la scène le concept de risque de volatilité, c'est-à-dire en quelque sorte le risque de modèle généré par la vision de la volatilité comme un paramètre constant, alors que celle-ci est elle-même volatile. Ainsi, des mesures précises et des prévisions fiables de la volatilité sont demandées à l'économètre, non seulement pour l'évaluation et la couverture des actifs dérivés0501s aussi plus généralement pour la gestion de portefeuille. La thèse centrale de cet article est que des stratégies opérationnelles de prévision statistique de la volatilité qui seraient model-free n'existent pas davantage que les opportunités d'arbitrage (free lunch) sur les marchés financiers. D'où le risque de modèle de volatilité contre lequel il est illusoire de vouloir s'immuniser. Plusieurs composantes spécifiques de ce risque de modèle sont analysées. On en déduira que le choix d'un modèle de volatilité pour une application financière donnée confronte toujours à un trade-off rendement/risque sur le modèle lui-même.

Suggested Citation

  • Ali Alami & Éric Renault, 2001. "Risque de modèle de volatilité," CIRANO Working Papers 2001s-06, CIRANO.
  • Handle: RePEc:cir:cirwor:2001s-06

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Nour Meddahi & Éric Renault, 1998. "Quadratic M-Estimators for ARCH-Type Processes," CIRANO Working Papers 98s-29, CIRANO.
    2. Hansen, Lars Peter & Richard, Scott F, 1987. "The Role of Conditioning Information in Deducing Testable," Econometrica, Econometric Society, vol. 55(3), pages 587-613, May.
    3. Drost, Feike C & Nijman, Theo E, 1993. "Temporal Aggregation of GARCH Processes," Econometrica, Econometric Society, vol. 61(4), pages 909-927, July.
    4. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    5. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    6. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    7. repec:bla:jtsera:v:23:y:2002:i:3:p:287-312 is not listed on IDEAS
    8. Nijman, Theo & Sentana, Enrique, 1996. "Marginalization and contemporaneous aggregation in multivariate GARCH processes," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 71-87.
    9. Meddahi, Nour & Renault, Eric, 2004. "Temporal aggregation of volatility models," Journal of Econometrics, Elsevier, vol. 119(2), pages 355-379, April.
    10. Laurence Broze & Christian Francq & Jean-Michel Zakoïan, 1999. "Efficient Use of High Order Autocorrelations for Estimating Autoregressive Processes," Working Papers 99-56, Center for Research in Economics and Statistics.
    11. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    12. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    13. Meddahi, N & Renault, E., 1996. "Aggregations and Marginalization of Garch and Stochastic Volatility Models," Papers 96.433, Toulouse - GREMAQ.
    14. Engle, Robert F & Ng, Victor K, 1993. " Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    15. R. F. Engle & A. J. Patton, 2001. "What good is a volatility model?," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 237-245.
    16. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    17. Laurence Broze & Christian Francq & Jean‐Michel Zakoïan, 2002. "Efficient use of higher‐lag autocorrelations for estimating autoregressive processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 23(3), pages 287-312, May.
    18. Milton Friedman, 1957. "A Theory of the Consumption Function," NBER Books, National Bureau of Economic Research, Inc, number frie57-1.
    19. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-155, January.
    20. Drost, Feike C. & Werker, Bas J. M., 1996. "Closing the GARCH gap: Continuous time GARCH modeling," Journal of Econometrics, Elsevier, vol. 74(1), pages 31-57, September.
    21. Ole Barndorff-Nielsen & Neil Shephard, 2000. "Non-Gaussian OU based models and some of their uses in financial economics," OFRC Working Papers Series 2000mf01, Oxford Financial Research Centre.
    22. Engle, Robert F & Lilien, David M & Robins, Russell P, 1987. "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model," Econometrica, Econometric Society, vol. 55(2), pages 391-407, March.
    23. Robert F. Engle & David F. Hendry & David Trumble, 1985. "Small-Sample Properties of ARCH Estimators and Tests," Canadian Journal of Economics, Canadian Economics Association, vol. 18(1), pages 66-93, February.
    24. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:2001s-06. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.