IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Quadratic M-Estimators for ARCH-Type Processes

  • Nour Meddahi
  • Éric Renault

This paper addresses the issue on estimating semiparametric time series models specified by their conditional mean and conditional variance. We stress the importance of using joint restrictions on the mean and variance. This leads to take into account the covariance between the mean and the variance and the variance of the variance, that is the skewness and kurtosis. We establish the direct links between the usual parametric estimation methods, namely the QMLE, the GMM and the M-estimation. The usual univariate QMLE is, under non-normality, less efficient than the optimal GMM estimator. However, the bivariate QMLE based on the dependent variable and its square is as efficient as the optimal GMM one. A Monte Carlo analysis confirms the relevance of our approach, in particular the importance of skewness. Cet article s'intéresse à l'estimation des modèles semiparamétriques de séries temporelles définis par leur moyenne et variance conditionnelles. Nous mettons en exergue l'importance de l'utilisation jointe des restrictions sur la moyenne et la variance. Ceci amène à tenir compte de la covariance entre la moyenne et la variance ainsi que de la variance de la variance, autrement dit la skewness et la kurtosis. Nous établissons les liens directs entre les méthodes paramétriques usuelles d'estimation, à savoir l'EPMV (Estimateur du Pseudo Maximum de Vraisemblance), les GMM et les M-estimateurs. L'EPMV usuel est, dans le cas de la non-normalité, moins efficace que l'estimateur GMM optimal. Néanmoins, l'EPMV bivarié basé sur le vecteur composé de la variable dépendante et de son carré est aussi efficace que l'estimateur GMM optimal. Une analyse Monte Carlo confirme la pertinence de notre approche, en particulier l'importance de la skewness.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.cirano.qc.ca/files/publications/98s-29.pdf
Download Restriction: no

Paper provided by CIRANO in its series CIRANO Working Papers with number 98s-29.

as
in new window

Length: 54 pages
Date of creation: 01 Jan 1998
Date of revision:
Handle: RePEc:cir:cirwor:98s-29
Contact details of provider: Postal: 1130 rue Sherbrooke Ouest, suite 1400, Montréal, Quéc, H3A 2M8
Phone: (514) 985-4000
Fax: (514) 985-4039
Web page: http://www.cirano.qc.ca/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. White, Halbert, 1982. "Maximum Likelihood Estimation of Misspecified Models," Econometrica, Econometric Society, vol. 50(1), pages 1-25, January.
  2. Bollerslev, Tim & Engle, Robert F. & Nelson, Daniel B., 1986. "Arch models," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 49, pages 2959-3038 Elsevier.
  3. Jeffrey M. Wooldridge, 1987. "Specification Testing and Quasi-Maximum Likelihood Estimation," Working papers 479, Massachusetts Institute of Technology (MIT), Department of Economics.
  4. Gourieroux Christian & Monfort Alain & Trognon A, 1981. "Pseudo maximum likelihood methods : theory," CEPREMAP Working Papers (Couverture Orange) 8129, CEPREMAP.
  5. Adrian Pagan, 1985. "Two Stage and Related Estimators and Their Applications," Cowles Foundation Discussion Papers 741, Cowles Foundation for Research in Economics, Yale University.
  6. repec:fth:inseep:9740 is not listed on IDEAS
  7. Drost, F.C. & Nijman, T.E., 1990. "Temporal aggregation of GARCH processes," Discussion Paper 1990-66, Tilburg University, Center for Economic Research.
  8. Babsiri, Mohamed El & Zakoian, Jean-Michel, 2001. "Contemporaneous asymmetry in GARCH processes," Journal of Econometrics, Elsevier, vol. 101(2), pages 257-294, April.
  9. Newey, Whitney K. & McFadden, Daniel, 1986. "Large sample estimation and hypothesis testing," Handbook of Econometrics, in: R. F. Engle & D. McFadden (ed.), Handbook of Econometrics, edition 1, volume 4, chapter 36, pages 2111-2245 Elsevier.
  10. repec:cup:etheor:v:9:y:1993:i:4:p:539-69 is not listed on IDEAS
  11. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  12. Hatanaka, Michio, 1974. "An efficient two-step estimator for the dynamic adjustment model with autoregressive errors," Journal of Econometrics, Elsevier, vol. 2(3), pages 199-220, September.
  13. repec:fth:inseep:9703 is not listed on IDEAS
  14. Whitney K. Newey & Douglas G. Steigerwald, 1997. "Asymptotic Bias for Quasi-Maximum-Likelihood Estimators in Conditional Heteroskedasticity Models," Econometrica, Econometric Society, vol. 65(3), pages 587-600, May.
  15. Weiss, Andrew A., 1986. "Asymptotic Theory for ARCH Models: Estimation and Testing," Econometric Theory, Cambridge University Press, vol. 2(01), pages 107-131, April.
  16. Drost, Feike C. & Klaassen, Chris A. J., 1997. "Efficient estimation in semiparametric GARCH models," Journal of Econometrics, Elsevier, vol. 81(1), pages 193-221, November.
  17. Engle, Robert F & Lilien, David M & Robins, Russell P, 1987. "Estimating Time Varying Risk Premia in the Term Structure: The Arch-M Model," Econometrica, Econometric Society, vol. 55(2), pages 391-407, March.
  18. Rilstone, Paul, 1992. "Semiparametric IV Estimation with Parameter Dependent Instruments," Econometric Theory, Cambridge University Press, vol. 8(03), pages 403-406, September.
  19. Drost, F.C. & Nijman, T.E., 1993. "Temporal aggregation of GARCH processes," Other publications TiSEM 0642fb61-c7f4-4281-b484-4, Tilburg University, School of Economics and Management.
  20. Engle, Robert F & Gonzalez-Rivera, Gloria, 1991. "Semiparametric ARCH Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 9(4), pages 345-59, October.
  21. de Jong, F.C.J.M. & Drost, F.C. & Werker, B.J.M., 1997. "Exchange rate target zones : A new approach," Discussion Paper 97.04, Tilburg University, Center for Economic Research.
  22. Chamberlain, Gary, 1982. "Multivariate regression models for panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 5-46, January.
  23. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-54, July.
  24. Nelson, Daniel B., 1990. "Stationarity and Persistence in the GARCH(1,1) Model," Econometric Theory, Cambridge University Press, vol. 6(03), pages 318-334, September.
  25. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
  26. Wooldridge, Jeffrey M., 1991. "On the application of robust, regression- based diagnostics to models of conditional means and conditional variances," Journal of Econometrics, Elsevier, vol. 47(1), pages 5-46, January.
  27. MEDDAHI, Nour & RENAULT, Éric, 1998. "Aggregations and Marginalization of GARCH and Stochastic Volatility Models," Cahiers de recherche 9818, Universite de Montreal, Departement de sciences economiques.
  28. Chamberlain, Gary, 1987. "Asymptotic efficiency in estimation with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 34(3), pages 305-334, March.
  29. Bates, Charles E. & White, Halbert, 1993. "Determination of Estimators with Minimum Asymptotic Covariance Matrices," Econometric Theory, Cambridge University Press, vol. 9(04), pages 633-648, August.
  30. Christian Francq & Jean-Michel Zakoïan, 1997. "Estimating Weak Garch Representations," Working Papers 97-40, Centre de Recherche en Economie et Statistique.
  31. White, Halbert, 1982. "Instrumental Variables Regression with Independent Observations," Econometrica, Econometric Society, vol. 50(2), pages 483-99, March.
  32. Hansen, B.E., 1992. "Autoregressive Conditional Density Estimation," RCER Working Papers 322, University of Rochester - Center for Economic Research (RCER).
  33. Lee, Sang-Won & Hansen, Bruce E., 1994. "Asymptotic Theory for the Garch(1,1) Quasi-Maximum Likelihood Estimator," Econometric Theory, Cambridge University Press, vol. 10(01), pages 29-52, March.
  34. Cragg, John G, 1983. "More Efficient Estimation in the Presence of Heteroscedasticity of Unknown Form," Econometrica, Econometric Society, vol. 51(3), pages 751-63, May.
  35. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  36. Linton, Oliver, 1993. "Adaptive Estimation in ARCH Models," Econometric Theory, Cambridge University Press, vol. 9(04), pages 539-569, August.
  37. repec:cup:etheor:v:8:y:1992:i:3:p:403-06 is not listed on IDEAS
  38. Robinson, P M, 1991. "Best Nonlinear Three-Stage Least Squares Estimation of Certain Econometric Models," Econometrica, Econometric Society, vol. 59(3), pages 755-86, May.
  39. Wooldridge, Jeffrey M., 1990. "A Unified Approach to Robust, Regression-Based Specification Tests," Econometric Theory, Cambridge University Press, vol. 6(01), pages 17-43, March.
  40. Tim Bollerslev & Jeffrey M. Wooldridge, 1988. "Quasi-Maximum Likelihood Estimation of Dynamic Models with Time-Varying Covariances," Working papers 505, Massachusetts Institute of Technology (MIT), Department of Economics.
  41. Hansen, Lars Peter, 1985. "A method for calculating bounds on the asymptotic covariance matrices of generalized method of moments estimators," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 203-238.
  42. Masry, Elias & Tjøstheim, Dag, 1995. "Nonparametric Estimation and Identification of Nonlinear ARCH Time Series Strong Convergence and Asymptotic Normality: Strong Convergence and Asymptotic Normality," Econometric Theory, Cambridge University Press, vol. 11(02), pages 258-289, February.
  43. P. BOSSAERTS & C. HAFNER & Wolfgang HÄRDLE, 1996. "Foreign Exchange Rates Have Surprising Volatility," SFB 373 Discussion Papers 1996,68, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  44. Nelson, Daniel B & Cao, Charles Q, 1992. "Inequality Constraints in the Univariate GARCH Model," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(2), pages 229-35, April.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cir:cirwor:98s-29. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.