IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Automated Likelihood Based Inference for Stochastic Volatility Models

  • Hans J. Skaug

    ()

    (Department of Mathematics, University of Bergen)

  • Jun Yu

    ()

    (School of Economics, Singapore Management University)

Registered author(s):

In this paper the Laplace approximation is used to perform classical and Bayesian analyses of univariate and multivariate stochastic volatility (SV) models. We show that implementation of the Laplace approximation is greatly simplified by the use of a numerical technique known as automatic differentiation (AD). Several algorithms are proposed and compared withsome existing methods using both simulated data and actual data in terms of computational,statistical and simulation efficiency. It is found that the new methods match the statistical efficiency of the existing classical methods and substantially reduce the simulation inefficiency in some existing Bayesian Markov chain Monte Carlo (MCMC) algorithms. Also proposed are simple methods for obtaining the filtered, smoothed and forecasted latent variable. The new methods are implemented using the software AD Model Builder, which with its latent variable module (ADMB-RE) facilitates the formulation and fitting of SV models. To illustrate the flexibility of the new algorithms, several univariate and multivariate SV models are fitted using exchange rate data.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: https://mercury.smu.edu.sg/rsrchpubupload/15724/sml_ADMB13.pdf
Download Restriction: no

Paper provided by Singapore Management University, School of Economics in its series Working Papers with number 15-2009.

as
in new window

Length: 27 pages
Date of creation: Nov 2009
Date of revision:
Publication status: Published in SMU Economics and Statistics Working Paper Series
Handle: RePEc:siu:wpaper:15-2009
Contact details of provider: Postal: 90 Stamford Road, Singapore 178903
Phone: 65-6828 0832
Fax: 65-6828 0833
Web page: http://www.economics.smu.edu.sg/

More information through EDIRC

Order Information: Email:


References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Jun Yu, 2004. "On Leverage in a Stochastic Volatility Model," Econometric Society 2004 Far Eastern Meetings 506, Econometric Society.
  2. Yasuhiro Omori & Siddhartha Chib & Neil Shephard & Jouchi Nakajima, 2004. "Stochastic volatility with leverage: fast likelihood inference," Economics Papers 2004-W19, Economics Group, Nuffield College, University of Oxford.
  3. Andersen, Torben G. & Chung, Hyung-Jin & Sorensen, Bent E., 1999. "Efficient method of moments estimation of a stochastic volatility model: A Monte Carlo study," Journal of Econometrics, Elsevier, vol. 91(1), pages 61-87, July.
  4. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comments: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 413-17, October.
  5. Danielsson, Jon, 1994. "Stochastic volatility in asset prices estimation with simulated maximum likelihood," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 375-400.
  6. Harvey, Andrew C & Shephard, Neil, 1996. "Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 429-34, October.
  7. Jun Yu & Renate Meyer, 2004. "Multivariate Stochastic Volatility Models: Bayesian Estimation and Model Comparison," Working Papers 23-2004, Singapore Management University, School of Economics.
  8. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
  9. Andersen, Torben G & Sorensen, Bent E, 1996. "GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 328-52, July.
  10. Skaug, Hans J. & Fournier, David A., 2006. "Automatic approximation of the marginal likelihood in non-Gaussian hierarchical models," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 699-709, November.
  11. Sangjoon Kim & Neil Shephard, 1994. "Stochastic volatility: likelihood inference and comparison with ARCH models," Economics Papers 3., Economics Group, Nuffield College, University of Oxford.
  12. Carmen Broto & Esther Ruiz, 2004. "Estimation methods for stochastic volatility models: a survey," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 613-649, December.
  13. Andersen, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Ebens, Heiko, 2001. "The distribution of realized stock return volatility," Journal of Financial Economics, Elsevier, vol. 61(1), pages 43-76, July.
  14. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
  15. Harvey, Andrew & Ruiz, Esther & Shephard, Neil, 1994. "Multivariate Stochastic Variance Models," Review of Economic Studies, Wiley Blackwell, vol. 61(2), pages 247-64, April.
  16. Hansen, B.E., 1992. "Autoregressive Conditional Density Estimation," RCER Working Papers 322, University of Rochester - Center for Economic Research (RCER).
  17. Renate Meyer & Jun Yu, 2000. "BUGS for a Bayesian analysis of stochastic volatility models," Econometrics Journal, Royal Economic Society, vol. 3(2), pages 198-215.
  18. Borus Jungbacker & Siem Jan Koopman, 2006. "Monte Carlo Likelihood Estimation for Three Multivariate Stochastic Volatility Models," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 385-408.
  19. Lee Kai Ming & Koopman Siem Jan, 2004. "Estimating Stochastic Volatility Models: A Comparison of Two Importance Samplers," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 8(2), pages 1-17, May.
  20. Durham, Garland B., 2006. "Monte Carlo methods for estimating, smoothing, and filtering one- and two-factor stochastic volatility models," Journal of Econometrics, Elsevier, vol. 133(1), pages 273-305, July.
  21. Michael McAleer & Marcelo Cunha Medeiros, 2006. "Realized volatility: a review," Textos para discussão 531 Publication status: F, Department of Economics PUC-Rio (Brazil).
  22. Melino, Angelo & Turnbull, Stuart M., 1990. "Pricing foreign currency options with stochastic volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 239-265.
  23. L. Randall Wray & Stephanie Bell, 2004. "Introduction," Chapters, in: Credit and State Theories of Money, chapter 1 Edward Elgar.
  24. J. Durbin & S. J. Koopman, 2000. "Time series analysis of non-Gaussian observations based on state space models from both classical and Bayesian perspectives," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 3-56.
  25. Danielsson, J & Richard, J-F, 1993. "Accelerated Gaussian Importance Sampler with Application to Dynamic Latent Variable Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages S153-73, Suppl. De.
  26. Liesenfeld, Roman & Richard, Jean-Francois, 2003. "Univariate and multivariate stochastic volatility models: estimation and diagnostics," Journal of Empirical Finance, Elsevier, vol. 10(4), pages 505-531, September.
  27. Durham, Garland B., 2007. "SV mixture models with application to S&P 500 index returns," Journal of Financial Economics, Elsevier, vol. 85(3), pages 822-856, September.
  28. Roman Liesenfeld & Jean-Francois Richard, 2006. "Classical and Bayesian Analysis of Univariate and Multivariate Stochastic Volatility Models," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 335-360.
  29. Berg, Andreas & Meyer, Renate & Yu, Jun, 2004. "Deviance Information Criterion for Comparing Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 107-20, January.
  30. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 145-175.
  31. Shephard, Neil, 1993. "Fitting Nonlinear Time-Series Models with Applications to Stochastic Variance Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 8(S), pages S135-52, Suppl. De.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:siu:wpaper:15-2009. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (QL THor)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.