IDEAS home Printed from https://ideas.repec.org/a/taf/emetrv/v25y2006i2-3p385-408.html
   My bibliography  Save this article

Monte Carlo Likelihood Estimation for Three Multivariate Stochastic Volatility Models

Author

Listed:
  • Borus Jungbacker
  • Siem Jan Koopman

Abstract

Estimating parameters in a stochastic volatility (SV) model is a challenging task. Among other estimation methods and approaches, efficient simulation methods based on importance sampling have been developed for the Monte Carlo maximum likelihood estimation of univariate SV models. This paper shows that importance sampling methods can be used in a general multivariate SV setting. The sampling methods are computationally efficient. To illustrate the versatility of this approach, three different multivariate stochastic volatility models are estimated for a standard data set. The empirical results are compared to those from earlier studies in the literature. Monte Carlo simulation experiments, based on parameter estimates from the standard data set, are used to show the effectiveness of the importance sampling methods.

Suggested Citation

  • Borus Jungbacker & Siem Jan Koopman, 2006. "Monte Carlo Likelihood Estimation for Three Multivariate Stochastic Volatility Models," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 385-408.
  • Handle: RePEc:taf:emetrv:v:25:y:2006:i:2-3:p:385-408
    DOI: 10.1080/07474930600712848
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/07474930600712848
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    2. Manabu Asai & Michael McAleer, 2006. "Asymmetric Multivariate Stochastic Volatility," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 453-473.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kastner, Gregor, 2019. "Sparse Bayesian time-varying covariance estimation in many dimensions," Journal of Econometrics, Elsevier, vol. 210(1), pages 98-115.
    2. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility (Revised in May 2007, Handbook of Financial Time Series (Published in "Handbook of Financial Time Series" (eds T.G. Andersen, R.A. Davis, Jens-Peter Kreiss," CARF F-Series CARF-F-094, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    3. Ishihara, Tsunehiro & Omori, Yasuhiro & Asai, Manabu, 2016. "Matrix exponential stochastic volatility with cross leverage," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 331-350.
    4. Michael Smith & Andrew Pitts, 2006. "Foreign Exchange Intervention by the Bank of Japan: Bayesian Analysis Using a Bivariate Stochastic Volatility Model," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 425-451.
    5. Hans J. Skaug & Jun Yu, 2009. "Automated Likelihood Based Inference for Stochastic Volatility Models," Working Papers 15-2009, Singapore Management University, School of Economics.
    6. Jun Yu & Renate Meyer, 2006. "Multivariate Stochastic Volatility Models: Bayesian Estimation and Model Comparison," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 361-384.
    7. Christian N. Brinch, 2008. "Simulated Maximum Likelihood using Tilted Importance Sampling," Discussion Papers 540, Statistics Norway, Research Department.
    8. M. Hakan Eratalay, 2016. "Estimation of Multivariate Stochastic Volatility Models: A Comparative Monte Carlo Study," International Econometric Review (IER), Econometric Research Association, vol. 8(2), pages 19-52, September.
    9. Gregor Kastner & Sylvia Fruhwirth-Schnatter & Hedibert Freitas Lopes, 2016. "Efficient Bayesian Inference for Multivariate Factor Stochastic Volatility Models," Papers 1602.08154, arXiv.org, revised Jul 2017.
    10. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    11. Geert Mesters & Bernd Schwaab & Siem Jan Koopman, 2014. "A Dynamic Yield Curve Model with Stochastic Volatility and Non-Gaussian Interactions: An Empirical Study of Non-standard Monetary Policy in the Euro Area," Tinbergen Institute Discussion Papers 14-071/III, Tinbergen Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:25:y:2006:i:2-3:p:385-408. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: http://www.tandfonline.com/LECR20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.