IDEAS home Printed from
   My bibliography  Save this article

Foreign Exchange Intervention by the Bank of Japan: Bayesian Analysis Using a Bivariate Stochastic Volatility Model


  • Michael Smith
  • Andrew Pitts


A bivariate stochastic volatility model is employed to measure the effect of intervention by the Bank of Japan (BOJ) on daily returns and volume in the USD/YEN foreign exchange market. Missing observations are accounted for, and a data-based Wishart prior for the precision matrix of the errors to the transition equation that is in line with the likelihood is suggested. Empirical results suggest there is strong conditional heteroskedasticity in the mean-corrected volume measure, as well as contemporaneous correlation in the errors to both the observation and transition equations. A threshold model is used for the BOJ reaction function, which is estimated jointly with the bivariate stochastic volatility model via Markov chain Monte Carlo. This accounts for endogeneity between volatility in the market and the BOJ reaction function, something that has hindered much previous empirical analysis in the literature on central bank intervention. The empirical results suggest there was a shift in behavior by the BOJ, with a movement away from a policy of market stabilization and toward a role of support for domestic monetary policy objectives. Throughout, we observe “leaning against the wind” behavior, something that is a feature of most previous empirical analysis of central bank intervention. A comparison with a bivariate EGARCH model suggests that the bivariate stochastic volatility model produces estimates that better capture spikes in in-sample volatility. This is important in improving estimates of a central bank reaction function because it is at these periods of high daily volatility that central banks more frequently intervene.

Suggested Citation

  • Michael Smith & Andrew Pitts, 2006. "Foreign Exchange Intervention by the Bank of Japan: Bayesian Analysis Using a Bivariate Stochastic Volatility Model," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 425-451.
  • Handle: RePEc:taf:emetrv:v:25:y:2006:i:2-3:p:425-451
    DOI: 10.1080/07474930600712897

    Download full text from publisher

    File URL:
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Tsionas, Mike, 2012. "Simple techniques for likelihood analysis of univariate and multivariate stable distributions: with extensions to multivariate stochastic volatility and dynamic factor models," MPRA Paper 40966, University Library of Munich, Germany, revised 20 Aug 2012.
    2. Bastian Gribisch, 2016. "Multivariate Wishart stochastic volatility and changes in regime," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(4), pages 443-473, October.
    3. Jacek Osiewalski & Anna Pajor, 2009. "Bayesian Analysis for Hybrid MSF-SBEKK Models of Multivariate Volatility," Central European Journal of Economic Modelling and Econometrics, CEJEME, vol. 1(2), pages 179-202, November.
    4. repec:spt:apfiba:v:7:y:2017:i:3:f:7_3_4 is not listed on IDEAS
    5. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    6. Siddhartha Chib & Yasuhiro Omori & Manabu Asai, 2007. "Multivariate stochastic volatility (Revised in May 2007, Handbook of Financial Time Series (Published in "Handbook of Financial Time Series" (eds T.G. Andersen, R.A. Davis, Jens-Peter Kreiss," CARF F-Series CARF-F-094, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:25:y:2006:i:2-3:p:425-451. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.