IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Forecasting Value-at-Risk Using Block Structure Multivariate Stochastic Volatility Models

Listed author(s):

Most multivariate variance or volatility models suffer from a common problem, the “curse of dimensionality”. For this reason, most are fitted under strong parametric restrictions that reduce the interpretation and flexibility of the models. Recently, the literature has focused on multivariate models with milder restrictions, whose purpose was to combine the need for interpretability and efficiency faced by model users with the computational problems that may emerge when the number of assets is quite large. We contribute to this strand of the literature proposing a block-type parameterization for multivariate stochastic volatility models. The empirical analysis on stock returns on US market shows that 1% and 5 % Value-at-Risk thresholds based on one-step-ahead forecasts of covariances by the new specification are satisfactory for the period includes the global financial crisis.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.econ.canterbury.ac.nz/RePEc/cbt/econwp/1204.pdf
Download Restriction: no

Paper provided by University of Canterbury, Department of Economics and Finance in its series Working Papers in Economics with number 12/04.

as
in new window

Length: 37 pages
Date of creation: 01 Mar 2012
Handle: RePEc:cbt:econwp:12/04
Contact details of provider: Postal:
Private Bag 4800, Christchurch, New Zealand

Phone: 64 3 369 3123 (Administrator)
Fax: 64 3 364 2635
Web page: http://www.econ.canterbury.ac.nz

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-131, February.
  2. Moschini, Giancarlo, 1998. "The semiflexible almost ideal demand system," European Economic Review, Elsevier, vol. 42(2), pages 349-364, February.
  3. Engle, Robert F & Sheppard, Kevin K, 2001. "Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH," University of California at San Diego, Economics Working Paper Series qt5s2218dp, Department of Economics, UC San Diego.
  4. Candelon, B. & Colletaz, G. & Hurlin, C. & Tokpavi, S., 2009. "Backtesting value-at-risk : a GMM duration-based test," Research Memorandum 051, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
  5. MacKinnon, James G & Haug, Alfred A & Michelis, Leo, 1999. "Numerical Distribution Functions of Likelihood Ratio Tests for Cointegration," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(5), pages 563-577, Sept.-Oct.
  6. Calvet, Laurent E. & Fisher, Adlai J. & Thompson, Samuel B., 2006. "Volatility comovement: a multifrequency approach," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 179-215.
  7. Manabu Asai & Massimiliano Caporin & Michael McAleer, 2010. "Block Structure Multivariate Stochastic Volatility Models," Working Papers in Economics 10/24, University of Canterbury, Department of Economics and Finance.
  8. Giancarlo Moschini & Daniele Moro & Richard D. Green, 1994. "Maintaining and Testing Separability in Demand Systems," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 76(1), pages 61-73.
  9. Li, Gang & Song, Haiyan & Witt, Stephen F., 2006. "Time varying parameter and fixed parameter linear AIDS: An application to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 22(1), pages 57-71.
  10. Danielsson, Jon, 1998. "Multivariate stochastic volatility models: Estimation and a comparison with VGARCH models," Journal of Empirical Finance, Elsevier, vol. 5(2), pages 155-173, June.
  11. Hammoudeh, Shawkat & McAleer, Michael, 2015. "Advances in financial risk management and economic policy uncertainty: An overview," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 1-7.
  12. Manabu Asai & Michael McAleer, 2005. "Asymmetric Multivariate Stochastic Volatility," DEA Working Papers 12, Universitat de les Illes Balears, Departament d'Economía Aplicada.
  13. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(01), pages 122-150, February.
  14. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
  15. McAleer, M.J. & Jiménez-Martín, J.A. & Pérez-Amaral, T., 2010. "GFC-Robust Risk Management Strategies under the Basel Accord," Econometric Institute Research Papers EI 2010-59, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  16. Massimiliano Caporin & Michael McAleer, 2010. "Do We Really Need Both BEKK and DCC? A Tale of Two Multivariate GARCH Models," KIER Working Papers 738, Kyoto University, Institute of Economic Research.
  17. Lehar, Alfred & Scheicher, Martin & Schittenkopf, Christian, 2002. "GARCH vs. stochastic volatility: Option pricing and risk management," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 323-345, March.
  18. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 145-175.
  19. Tsunehiro Ishihara & Yasuhiro Omori, 2009. "Multivariate Stochastic Volatility with Cross Leverage," CIRJE F-Series CIRJE-F-690, CIRJE, Faculty of Economics, University of Tokyo.
  20. Hafner, Christian M. & Preminger, Arie, 2009. "On asymptotic theory for multivariate GARCH models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2044-2054, October.
  21. David Chan & Robert Kohn & Chris Kirby, 2006. "Multivariate Stochastic Volatility Models with Correlated Errors," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 245-274.
  22. Arthur Lewbel & Serena Ng, 2000. "Demand Systems With Nonstationary Prices," Boston College Working Papers in Economics 441, Boston College Department of Economics, revised 07 Jun 2002.
  23. Asai, Manabu, 2009. "Bayesian analysis of stochastic volatility models with mixture-of-normal distributions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2579-2596.
  24. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
  25. Peter Christoffersen & Kris Jacobs & Yintian Wang, 2004. "Option Valuation with Long-run and Short-run Volatility Components," CIRANO Working Papers 2004s-56, CIRANO.
  26. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2006. "Analysis of high dimensional multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 134(2), pages 341-371, October.
  27. Liesenfeld, Roman & Jung, Robert C., 1997. "Stochastic volatility models: Conditional normality versus heavy tailed distributions," Tübinger Diskussionsbeiträge 103, University of Tübingen, School of Business and Economics.
  28. Lorenzo Cappiello & Robert F. Engle & Kevin Sheppard, 2006. "Asymmetric Dynamics in the Correlations of Global Equity and Bond Returns," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(4), pages 537-572.
  29. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range-Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, 06.
  30. Pashardes, Panos, 1993. "Bias in Estimating the Almost Ideal Demand System with the Stone Index Approximation," Economic Journal, Royal Economic Society, vol. 103(419), pages 908-915, July.
  31. Aguilar, Omar & West, Mike, 2000. "Bayesian Dynamic Factor Models and Portfolio Allocation," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(3), pages 338-357, July.
  32. Caporin, M. & McAleer, M.J., 2013. "Ten Things You Should Know About the Dynamic Conditional Correlation Representation," Econometric Institute Research Papers EI 2013-21, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  33. Yacine Aït-Sahalia, 2001. "Variable Selection for Portfolio Choice," Journal of Finance, American Finance Association, vol. 56(4), pages 1297-1351, 08.
  34. McAleer, Michael, 2005. "Automated Inference And Learning In Modeling Financial Volatility," Econometric Theory, Cambridge University Press, vol. 21(01), pages 232-261, February.
  35. Michael McAleer & Bing-Wen Huang & Hsiao-I Kuo & Chi-Chung Chen & Chia-Lin Chang, 2009. "An Econometric Analysis of SARS and Avian Flu on International Tourist Arrivals to Asia," CIRJE F-Series CIRJE-F-649, CIRJE, Faculty of Economics, University of Tokyo.
  36. Harvey, Andrew C & Shephard, Neil, 1996. "Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 429-434, October.
  37. Jeff Fleming, 2001. "The Economic Value of Volatility Timing," Journal of Finance, American Finance Association, vol. 56(1), pages 329-352, 02.
  38. Hammoudeh, Shawkat & Araújo Santos, Paulo & Al-Hassan, Abdullah, 2013. "Downside risk management and VaR-based optimal portfolios for precious metals, oil and stocks," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 318-334.
  39. Siem Jan Koopman & Eugenie Hol Uspensky, 2002. "The stochastic volatility in mean model: empirical evidence from international stock markets," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(6), pages 667-689.
  40. Asai, Manabu & Brugal, Ivan, 2013. "Forecasting volatility via stock return, range, trading volume and spillover effects: The case of Brazil," The North American Journal of Economics and Finance, Elsevier, vol. 25(C), pages 202-213.
  41. Andrew Harvey & Esther Ruiz & Neil Shephard, 1994. "Multivariate Stochastic Variance Models," Review of Economic Studies, Oxford University Press, vol. 61(2), pages 247-264.
  42. Peter Christoffersen & Denis Pelletier, 2003. "Backtesting Value-at-Risk: A Duration-Based Approach," CIRANO Working Papers 2003s-05, CIRANO.
  43. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
  44. Chib, Siddhartha & Nardari, Federico & Shephard, Neil, 2002. "Markov chain Monte Carlo methods for stochastic volatility models," Journal of Econometrics, Elsevier, vol. 108(2), pages 281-316, June.
  45. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-862, November.
  46. MacKinnon, James G, 1996. "Numerical Distribution Functions for Unit Root and Cointegration Tests," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 11(6), pages 601-618, Nov.-Dec..
  47. Mikhail Chernov & A. Ronald Gallant & Eric Ghysels & George Tauchen, 2002. "Alternative Models for Stock Price Dynamics," CIRANO Working Papers 2002s-58, CIRANO.
  48. Andreas Papatheodorou, 1999. "The demand for international tourism in the Mediterranean region," Applied Economics, Taylor & Francis Journals, vol. 31(5), pages 619-630.
  49. Jun Yu & Renate Meyer, 2006. "Multivariate Stochastic Volatility Models: Bayesian Estimation and Model Comparison," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 361-384.
  50. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
  51. Monica Billio & Massimiliano Caporin & Michele Gobbo, 2006. "Flexible Dynamic Conditional Correlation multivariate GARCH models for asset allocation," Applied Financial Economics Letters, Taylor and Francis Journals, vol. 2(2), pages 123-130, March.
  52. Manabu Asai & Michael McAleer, 2009. "Multivariate stochastic volatility, leverage and news impact surfaces," Econometrics Journal, Royal Economic Society, vol. 12(2), pages 292-309, 07.
  53. Moschini, GianCarlo, 1998. "Semiflexible Almost Ideal Demand System, The," Staff General Research Papers Archive 1193, Iowa State University, Department of Economics.
  54. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
  55. M. Thea Sinclair, 1998. "Tourism and economic development: A survey," Journal of Development Studies, Taylor & Francis Journals, vol. 34(5), pages 1-51.
  56. Asai, Manabu, 2008. "Autoregressive stochastic volatility models with heavy-tailed distributions: A comparison with multifactor volatility models," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 332-341, March.
  57. Asai, Manabu & McAleer, Michael, 2009. "The structure of dynamic correlations in multivariate stochastic volatility models," Journal of Econometrics, Elsevier, vol. 150(2), pages 182-192, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cbt:econwp:12/04. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Albert Yee)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.