IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Ranking multivariate GARCH models by problem dimension

  • Caporin, M.
  • McAleer, M.J.

In the last 15 years, several Multivariate GARCH (MGARCH) models have appeared in the literature. The two most widely known and used are the Scalar BEKK model of Engle and Kroner (1995) and Ding and Engle (2001), and the DCC model of Engle (2002). Some recent research has begun to examine MGARCH specifications in terms of their out-of-sample forecasting performance. In this paper, we provide an empirical comparison of a set of MGARCH models, namely BEKK, DCC, Corrected DCC (cDCC) of Aeilli (2008), CCC of Bollerslev (1990), Exponentially Weighted Moving Average, and covariance shrinking of Ledoit and Wolf (2004), using the historical data of 89 US equities. Our methods follow some of the approach described in Patton and Sheppard (2009), and contribute to the literature in several directions. First, we consider a wide range of models, including the recent cDCC model and covariance shrinking. Second, we use a range of tests and approaches for direct and indirect model comparison, including the Weighted Likelihood Ratio test of Amisano and Giacomini (2007). Third, we examine how the model rankings are influenced by the cross-sectional dimension of the problem.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://repub.eur.nl/pub/19447/EI2010-34.pdf
Download Restriction: no

Paper provided by Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute in its series Econometric Institute Research Papers with number EI 2010-34.

as
in new window

Length:
Date of creation: 11 May 2010
Date of revision:
Handle: RePEc:ems:eureir:19447
Contact details of provider: Postal:
Postbus 1738, 3000 DR Rotterdam

Phone: 31 10 4081111
Web page: http://www.eur.nl/ese

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Sébastien Laurent & Jeroen V.K. Rombouts & Francesco Violante, 2009. "On Loss Functions and Ranking Forecasting Performances of Multivariate Volatility Models," Cahiers de recherche 0948, CIRPEE.
  2. Robert Engle & Neil Shephard & Kevin Shepphard, 2008. "Fitting vast dimensional time-varying covariance models," OFRC Working Papers Series 2008fe30, Oxford Financial Research Centre.
  3. Hafner, C.M. & Herwartz, H., 2003. "Analytical quasi maximum likelihood inference in multivariate volatility models," Econometric Institute Research Papers EI 2003-21, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  4. West, Kenneth D., 2006. "Forecast Evaluation," Handbook of Economic Forecasting, Elsevier.
  5. Massimiliano Caporin & Michael McAleer, 2010. "Do We Really Need Both BEKK and DCC? A Tale of Two Multivariate GARCH Models," KIER Working Papers 738, Kyoto University, Institute of Economic Research.
  6. Massimiliano Caporin & Michael McAleer, 2009. "Do We Really Need Both BEKK and DCC? A Tale of Two Covariance Models," Documentos de Trabajo del ICAE 0904, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
  7. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 145-175.
  8. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(01), pages 122-150, February.
  9. McAleer, Michael, 2005. "Automated Inference And Learning In Modeling Financial Volatility," Econometric Theory, Cambridge University Press, vol. 21(01), pages 232-261, February.
  10. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
  11. Francis X. Diebold & Robert S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
  12. Manabu Asai & Massimiliano Caporin & Michael McAleer, 2009. "Block Structure Multivariate Stochastic Volatility Models," CIRJE F-Series CIRJE-F-699, CIRJE, Faculty of Economics, University of Tokyo.
  13. Engle, Robert F & Sheppard, Kevin K, 2001. "Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH," University of California at San Diego, Economics Working Paper Series qt5s2218dp, Department of Economics, UC San Diego.
  14. BAUWENS, Luc & LAURENT, Sébastien & ROMBOUTS, Jeroen, 2003. "Multivariate GARCH models: a survey," CORE Discussion Papers 2003031, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
  15. Shiqing Ling & Michael McAleer, 2001. "Asymptotic Theory for a Vector ARMA-GARCH Model," ISER Discussion Paper 0549, Institute of Social and Economic Research, Osaka University.
  16. Massimiliano Caporin & Michael McAleer, 2008. "Scalar BEKK and indirect DCC," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(6), pages 537-549.
  17. Tsunehiro Ishihara & Yasuhiro Omori, 2009. "Multivariate Stochastic Volatility with Cross Leverage," CIRJE F-Series CIRJE-F-690, CIRJE, Faculty of Economics, University of Tokyo.
  18. Lorenzo Cappiello & Robert F. Engle & Kevin Sheppard, 2006. "Asymmetric Dynamics in the Correlations of Global Equity and Bond Returns," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(4), pages 537-572.
  19. Michael McAleer & Marcelo Cunha Medeiros, 2006. "Realized volatility: a review," Textos para discussão 531 Publication status: F, Department of Economics PUC-Rio (Brazil).
  20. Jacob A. Mincer & Victor Zarnowitz, 1969. "The Evaluation of Economic Forecasts," NBER Chapters, in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 3-46 National Bureau of Economic Research, Inc.
  21. Jeantheau, Thierry, 1998. "Strong Consistency Of Estimators For Multivariate Arch Models," Econometric Theory, Cambridge University Press, vol. 14(01), pages 70-86, February.
  22. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
  23. Adam Clements & Mark Doolan & Stan Hurn & Ralf Becker, 2009. "Evaluating multivariate volatility forecasts," NCER Working Paper Series 41, National Centre for Econometric Research, revised 25 Nov 2009.
  24. Kenneth D. West, 1994. "Asymptotic Inference About Predictive Ability," Macroeconomics 9410002, EconWPA.
  25. Massimiliano Caporin & Paolo Paruolo, 2009. "Structured Multivariate Volatility Models," "Marco Fanno" Working Papers 0091, Dipartimento di Scienze Economiche "Marco Fanno".
  26. Bonato, Matteo & Caporin, Massimiliano & Ranaldo, Angelo, 2012. "Forecasting Realized (Co)Variances with a Bloc Structure Wishart Autoregressive Model," Working Papers on Finance 1211, University of St. Gallen, School of Finance.
  27. Miguel A. Ferreira, 2005. "Evaluating Interest Rate Covariance Models Within a Value-at-Risk Framework," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(1), pages 126-168.
  28. McAleer, Michael & Chan, Felix & Hoti, Suhejla & Lieberman, Offer, 2008. "Generalized Autoregressive Conditional Correlation," Econometric Theory, Cambridge University Press, vol. 24(06), pages 1554-1583, December.
  29. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
  30. Olivier Ledoit & Michael Wolf, 2001. "Improved estimation of the covariance matrix of stock returns with an application to portofolio selection," Economics Working Papers 586, Department of Economics and Business, Universitat Pompeu Fabra.
  31. Engle, Robert & Colacito, Riccardo, 2006. "Testing and Valuing Dynamic Correlations for Asset Allocation," Journal of Business & Economic Statistics, American Statistical Association, vol. 24, pages 238-253, April.
  32. Gianni Amisano & Raffaella Giacomini, 2005. "Comparing Density Forecsts via Weighted Likelihood Ratio Tests," Working Papers ubs0504, University of Brescia, Department of Economics.
  33. Comte, F. & Lieberman, O., 2003. "Asymptotic theory for multivariate GARCH processes," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 61-84, January.
  34. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-50, July.
  35. Peter Reinhard Hansen & Asger Lunde & James M. Nason, 2005. "Model confidence sets for forecasting models," FRB Atlanta Working Paper 2005-07, Federal Reserve Bank of Atlanta.
  36. Christian Hafner & Philip Hans Franses, 2009. "A Generalized Dynamic Conditional Correlation Model: Simulation and Application to Many Assets," Econometric Reviews, Taylor & Francis Journals, vol. 28(6), pages 612-631.
  37. Monica Billio & Massimiliano Caporin & Michele Gobbo, 2006. "Flexible Dynamic Conditional Correlation multivariate GARCH models for asset allocation," Applied Financial Economics Letters, Taylor and Francis Journals, vol. 2(2), pages 123-130, March.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ems:eureir:19447. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RePub)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.