IDEAS home Printed from https://ideas.repec.org/p/ven/wpaper/2006_53.html
   My bibliography  Save this paper

A generalized Dynamic Conditional Correlation Model for Portfolio Risk Evaluation

Author

Listed:
  • Monica Billio

    () (Department of Economics, University Of Venice Ca� Foscari)

  • Massimiliano Caporin

    (massimiliano.caporin@unipd.it)

Abstract

We propose a generalization of the Dynamic Conditional Correlation multivariate GARCH model of Engle (2002) and of the Asymmetric Dynamic Conditional Correlation model of Cappiello et al. (2006). The model we propose introduces a block structure in parameter matrices that allows for interdependence with a reduced number of parameters. Our model nests the Flexible Dynamic Conditional Correlation model of Billio et al. (2006) and is named Quadratic Flexible Dynamic Conditional Correlation Multivariate GARCH. In the paper, we provide conditions for positive definiteness of the conditional correlations. We also present an empirical application to the Italian stock market comparing alternative correlation models for portfolio risk evaluation.

Suggested Citation

  • Monica Billio & Massimiliano Caporin, 2006. "A generalized Dynamic Conditional Correlation Model for Portfolio Risk Evaluation," Working Papers 2006_53, Department of Economics, University of Venice "Ca' Foscari".
  • Handle: RePEc:ven:wpaper:2006_53
    as

    Download full text from publisher

    File URL: http://www.unive.it/pag/fileadmin/user_upload/dipartimenti/economia/doc/Pubblicazioni_scientifiche/working_papers/2006/WP_DSE_Billio_Caporin_53_06.pdf
    File Function: First version, 2006
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ling, Shiqing & McAleer, Michael, 2003. "Asymptotic Theory For A Vector Arma-Garch Model," Econometric Theory, Cambridge University Press, vol. 19(02), pages 280-310, April.
    2. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(01), pages 122-150, February.
    3. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility: A Review," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 145-175.
    4. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    5. Sébastien Laurent & Luc Bauwens & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109.
    6. Lorenzo Cappiello & Robert F. Engle & Kevin Sheppard, 2006. "Asymmetric Dynamics in the Correlations of Global Equity and Bond Returns," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(4), pages 537-572.
    7. Jose A. Lopez, 1999. "Methods for evaluating value-at-risk estimates," Economic Review, Federal Reserve Bank of San Francisco, pages 3-17.
    8. Engle, Robert F & Sheppard, Kevin K, 2001. "Theoretical and Empirical Properties of Dynamic Conditional Correlation Multivariate GARCH," University of California at San Diego, Economics Working Paper Series qt5s2218dp, Department of Economics, UC San Diego.
    9. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    10. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    11. Massimiliano Caporin & Michael McAleer, 2006. "Dynamic Asymmetric GARCH," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(3), pages 385-412.
    12. Comte, F. & Lieberman, O., 2003. "Asymptotic theory for multivariate GARCH processes," Journal of Multivariate Analysis, Elsevier, vol. 84(1), pages 61-84, January.
    13. McAleer, Michael, 2005. "Automated Inference And Learning In Modeling Financial Volatility," Econometric Theory, Cambridge University Press, vol. 21(01), pages 232-261, February.
    14. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    15. Hafner, C.M. & Franses, Ph.H.B.F., 2003. "A generalized dynamic conditional correlation model for many asset returns," Econometric Institute Research Papers EI 2003-18, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    16. Monica Billio & Massimiliano Caporin & Michele Gobbo, 2006. "Flexible Dynamic Conditional Correlation multivariate GARCH models for asset allocation," Applied Financial Economics Letters, Taylor and Francis Journals, vol. 2(2), pages 123-130, March.
    17. McAleer, Michael & Chan, Felix & Hoti, Suhejla & Lieberman, Offer, 2008. "Generalized Autoregressive Conditional Correlation," Econometric Theory, Cambridge University Press, vol. 24(06), pages 1554-1583, December.
    18. Tse, Y K & Tsui, Albert K C, 2002. "A Multivariate Generalized Autoregressive Conditional Heteroscedasticity Model with Time-Varying Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 351-362, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Massimiliano Caporin & Michael McAleer, 2009. "Do We Really Need Both BEKK and DCC? A Tale of Two Covariance Models," Documentos de Trabajo del ICAE 2009-04, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    2. Luc Bauwens & Christian M. Hafner & Diane Pierret, 2013. "Multivariate Volatility Modeling Of Electricity Futures," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 743-761, August.
    3. Amine Lahiani & Khaled Guesmi, 2014. "Commodity Price Correlation and Time varying Hedge Ratios," Working Papers 2014-142, Department of Research, Ipag Business School.
    4. Matteo Bonato & Massimiliano Caporin & Angelo Ranaldo, 2009. "Forecasting realized (co)variances with a block structure Wishart autoregressive model," Working Papers 2009-03, Swiss National Bank.
    5. repec:oup:jfinec:v:15:y:2017:i:2:p:247-285. is not listed on IDEAS
    6. Roberto Casarin & Marco Tronzano & Domenico Sartore, 2013. "Bayesian Markov Switching Stochastic Correlation Models," Working Papers 2013:11, Department of Economics, University of Venice "Ca' Foscari".
    7. Bonato, Matteo & Caporin, Massimiliano & Ranaldo, Angelo, 2013. "Risk spillovers in international equity portfolios," Journal of Empirical Finance, Elsevier, vol. 24(C), pages 121-137.
    8. Noureldin, Diaa & Shephard, Neil & Sheppard, Kevin, 2014. "Multivariate rotated ARCH models," Journal of Econometrics, Elsevier, vol. 179(1), pages 16-30.
    9. repec:hrv:faseco:34650305 is not listed on IDEAS
    10. Fabrizio Durante & Roberta Pappadà & Nicola Torelli, 2014. "Clustering of financial time series in risky scenarios," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(4), pages 359-376, December.
    11. Alexandridis, G. & Sahoo, S. & Visvikis, I., 2017. "Economic information transmissions and liquidity between shipping markets: New evidence from freight derivatives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 98(C), pages 82-104.
    12. Aielli, Gian Piero & Caporin, Massimiliano, 2014. "Variance clustering improved dynamic conditional correlation MGARCH estimators," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 556-576.
    13. Nadine McCloud & Yongmiao Hong, 2011. "Testing The Structure Of Conditional Correlations In Multivariate Garch Models: A Generalized Cross‐Spectrum Approach," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(4), pages 991-1037, November.
    14. Yen-Hsien Lee, 2014. "An international analysis of REITs and stock portfolio management based on dynamic conditional correlation models," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 28(2), pages 165-180, May.
    15. Jacobs, Michael & Karagozoglu, Ahmet K., 2014. "On the characteristics of dynamic correlations between asset pairs," Research in International Business and Finance, Elsevier, vol. 32(C), pages 60-82.
    16. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," CORE Discussion Papers 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    17. Acatrinei, Marius & Gorun, Adrian & Marcu, Nicu, 2013. "A DCC-GARCH Model To Estimate the Risk to the Capital Market in Romania," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(1), pages 136-148, March.
    18. Paolella, Marc S. & Polak, Paweł, 2015. "ALRIGHT: Asymmetric LaRge-scale (I)GARCH with Hetero-Tails," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 282-297.
    19. repec:wyi:journl:002141 is not listed on IDEAS
    20. Aielli, Gian Piero & Caporin, Massimiliano, 2013. "Fast clustering of GARCH processes via Gaussian mixture models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 94(C), pages 205-222.
    21. Allen, David E. & Gao, Jiti & McAleer, Michael, 2009. "Modelling and managing financial risk: An overview," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2521-2524.
    22. repec:dau:papers:123456789/7741 is not listed on IDEAS
    23. Lu, Jin-Ray & Lee, Pei-Hsuan & Chuang, I-Yuan, 2011. "Estimation of oil firm's systematic risk via composite time-varying models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(11), pages 2389-2399.
    24. Saker Sabkha & Christian De Peretti, 2018. "On the performances of Dynamic Conditional Correlation models in the Sovereign CDS market and the corresponding bond market," Working Papers hal-01710398, HAL.

    More about this item

    Keywords

    Dynamic correlations; Block-structures; Flexible correlation models;

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • G18 - Financial Economics - - General Financial Markets - - - Government Policy and Regulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ven:wpaper:2006_53. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Geraldine Ludbrook). General contact details of provider: http://edirc.repec.org/data/dsvenit.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.